В чем измеряется спектральная плотность. Спектральная плотность мощности. Спектральная плотность энергии сигнала

Наиболее важной характеристикой стационарных случайных процессов является спектральная плотность мощности, описывающая распределение мощности шума по частотному спектру. Рассмотрим стационарный случайный процесс, который может быть представлен беспорядочной последовательностью импульсов напряжения или тока, следующих друг за другом через случайные интервалы времени. Процесс со случайной последовательностью импульсов является непериодическим. Тем не менее, можно говорить о спектре такого процесса, понимая в данном случае под спектром распределение мощности по частотам.

Для описания шумов вводят понятие спектральной плотности мощности (СПМ) шума, называемой также в общем случае спектральной плотностью (СП) шума,которая определяется соотношением:

где P (f ) - усредненная по времени мощность шума в полосе частотf на частоте измеренияf .

Как следует из соотношения (2.10), СП шума имеет размерность Вт/Гц. В общем случае СП является функцией частоты. Зависимость СП шума от частоты называют энергетическим спектром , который несет информацию о динамических характеристиках системы.

Если случайный процесс эргодический, то можно находить энергетический спектр такого процесса по его единственной реализации, что широко используется на практике..

При рассмотрении спектральных характеристик стационарного случайного процесса часто оказывается необходимым пользоваться понятием ширины спектра шума. Площадь под кривой энергетического спектра случайного процесса, отнесенную к СП шума на некоторой характерной частоте f 0 , называютэффективной шириной спектра , которая определяется по формуле:

(2.11)

Эту величину можно трактовать как ширину равномерного энергетического спектра случайного процесса в полосе
, эквивалентного по средней мощности рассматриваемому процессу.

Мощность шума P , заключенная в полосе частотf 1 …f 2 , равна

(2.12)

Если СП шума в полосе частот f 1 ...f 2 постоянна и равнаS 0 , тогда для мощности шума в данной полосе частот имеем:
гдеf =f 2 -f 1 – полоса частот, пропускаемая схемой или измерительным прибором.

Важным случаем стационарного случайного процесса является белый шум, для которого спектральная плотность не зависит от частоты в широком диапазоне частот (теоретически – в бесконечном диапазоне частот). Энергетический спектр белого шума в диапазоне частот -∞ < f < +∞ дается выражением:

= 2S 0 = const, (2.13)

Модель белого шума описывает случайный процесс без памяти (без последействия). Белый шумвозникает в системах с большим числом простых однородных элементов и характеризуется распределением амплитуды флуктуаций по нормальному закону. Свойства белого шума определяются статистикой независимых одиночных событий (например, тепловым движением носителей заряда в проводнике или полупроводнике). Вместе с тем истинный белый шум с бесконечной полосой частот не существует, поскольку он имеет бесконечную мощность.

На рис. 2.3. приведена типичная осциллограмма белого шума (зависимость мгновенных значений напряжения от времени) (рис. 2.3а) и функция распределения вероятности мгновенных величин напряжения e ,которая является нормальным распределением (рис. 2.3б). Заштрихованная площадь под кривой соответствует вероятности появления мгновенных величин напряженияe , превышающих значениеe 1 .

Рис. 2.3. Типичная осциллограмма белого шума (а) и функция распределения плотности вероятности мгновенных величин амплитуды напряжения шума (б).

На практике при оценке величины шума какого-либо элемента или п/п прибора обычно измеряют среднеквадратичное шумовое напряжение в единицах В 2 или среднеквадратичный токв единицах А 2 . При этом СП шума выражают в единицах В 2 /Гц или А 2 /Гц, а спектральные плотности флуктуаций напряженияS u (f ) или токаS I (f ) вычисляются по следующим формулам:

(2.14)

где
и – усредненные по времени шумовое напряжение и ток в полосе частотf соответственно. Черта сверху означает усреднение по времени.

В практических задачах при рассмотрении флуктуаций различных физических величин вводят понятие обобщенной спектральной плотности флуктуаций. При этом СП флуктуаций, например, для сопротивления R выражается в единицах Ом 2 /Гц; флуктуации магнитной индукции измеряются в единицах Тл 2 /Гц, а флуктуации частоты автогенератора – в единицах Гц 2 /Гц = Гц.

При сравнении уровней шума в линейных двухполюсниках одного и того же типа удобно пользоваться относительной спектральной плотностью шума, которая определяется как

=
, (2.15)

где u – падение постоянного напряжения на линейном двухполюснике.

Как видно из выражения (2.15), относительная спектральная плотность шума S (f ) выражается в единицах Гц -1 .

1) По своему физическому смыслу спектр мощности вещественен и неотрицателен:

Поэтому по спектру мощности принципиально невозможно восстановить какую - либо отдельно взятую реализацию случайного процесса.

2) Поскольку чётная функция аргумента , то соответствующий спектр мощности представляет собой чётную функцию частоты . Отсюда следует, что пару преобразований Фурье (6.14), (6.15) можно записать, используя интегралы в полубесконечных пределах:

(6.17)

(6.18)

3. Целесообразно ввести так называемый односторонний спектр мощности случайного процесса, определив его следующим образом:

(6.19)

Функция позволяет вычислить дисперсию стационарного случайного процесса путём интегрирования по положительным (физическим частотам):

(6.20)

4. В технических расчётах часто вводят односторонний спектр мощности N(f), представляющий собой среднюю мощность случайного процесса, приходящуюся на интервал частот шириной в 1 Гц:

(6.21)

При этом, как легко видеть

Весьма важным параметром случайных процессов является интервал корреляции. Случайные процессы, как правило, обладают следующими свойствами: их функция корреляции стремится к нулю с увеличением временного сдвига . Чем быстрее убывает функция , тем меньше оказывается статистическая связь между мгновенными значениями случайного сигнала в два несовпадающих момента времени.

Числовой характеристикой, служащей для оценки «скорости изменения» реализации случайного процесса, является интервал корреляции определяемый выражением:

(6.22)

Если известна информация о поведении какой-либо реализации «в прошлом», то возможен вероятностный прогноз случайного процесса на время порядка .

Ещё одним существенным параметром для случайного процесса является эффективная ширина спектра. Пусть исследуемый случайный процесс характеризуется функцией - односторонним спектром мощности, причём - экстремальное значение этой функции. Заменим мысленно данный случайный процесс другим процессом, у которого спектральная плотность мощности постоянна и равна в пределах эффективной полосы частот , выбираемой из условия равенства средних мощностей обоих процессов:

Отсюда получается формула для эффективной ширины спектра:

(6.23)

Вне пределов указанной полосы спектральная плотность случайного процесса считается равной 0.

Этой числовой характеристикой часто пользуются для инженерного расчёта дисперсии шумового сигнала: .



Если реализации случайного процесса имеют размерность напряжения (В), то относительный спектр мощности N имеет размерность .

Белый шум и его свойства. Гауссовский случайный процесс.

А) Белый шум.

стационарный случайный процесс с постоянной на всех частотах спектральной плотностью мощности называется белым шумом.

(7.1)

По теореме Винера-Хинчина функция корреляции белого шума:

равна нулю всюду кроме точки . Средняя мощность (дисперсия) белого шума неограниченно велика.

Белый шум является дельта-коррелированным процессом. Некоррелированность мгновенных значений такого случайного сигнала означает бесконечно большую скорость изменения их во времени – как бы мал ни был интервал , сигнал за это время может измениться на любую наперёд заданную величину.

Белый шум является абстрактной математической моделью и отвечающий ему физический процесс, безусловно, не существует в природе. Однако это не мешает приближённо заменять реальные достаточно широкополосные случайные процессы белым шумом в тех случаях, когда полоса пропускания цепи, на которую воздействует случайный сигнал, оказывается существенно уже эффективной ширины спектра шума.

В теории управления существуют и взаимно дополняют друг друга два подхода:

1) временнóй – исследование процессов во времени;

2) частотный – исследование частотных свойств сигналов и систем (с помощью передаточных функций и частотных характеристик).

Аналогичная ситуация наблюдается и при рассмотрении случайных процессов. Основная временная характеристика стационарного процесса – это корреляционная функция, а частотные свойства описываются спектральной плотностью.

Спектральная плотность – это функция, которая показывает распределение мощности сигнала по частотам. Такая информация о полезных сигналах, помехах и возмущениях очень важна для разработчика систем управления. Система должна быть спроектирована так, чтобы усиливать сигналы с «полезными» частотами и подавлять «вредные» частоты, характерные для помех и возмущений.

Для перехода от временнóго описания детерминированных (не случайных) процессов к частотному, используют преобразования Фурье и Лапласа. Аналогично спектральная плотность случайного процесса может быть найдена как преобразование Фурье от корреляционной функции:

Здесь – мнимая единица, а – угловая частота в рад/с ( , где – «обычная» частота в герцах). Используя формулу Эйлера, можно представить экспоненту в виде сумму вещественной (косинусной) и мнимой (синусной) составляющих: . Функция – нечетная по , поэтому интеграл от нее в симметричных пределах равен нулю. Напротив, функция – четная, так что при интегрировании можно взять интервал от 0 до и удвоить результат:

Спектральная плотность чем-то похожа на плотность распределения вероятностей, только она характеризует плотность распределения мощности сигнала по частотам. Если случайный процесс – это напряжение в вольтах, то его корреляционная функция измеряется в В 2 , а спектральная плотность – в В 2 /Гц.

Спектральная плотность случайного процесса, имеющего корреляционную функцию , вычисляется как

Интервал интегрирования разбит на две части. При имеем , а при – . Выполняя интегрирование, получаем

На рисунке слева показана корреляционная функция, а справа – соответствующая ей спектральная плотность мощности:

Свойства спектральной плотности:

1) это неотрицательная, четная функция угловой частоты (график расположен выше оси абсцисс и симметричен относительно вертикальной оси);

2) интеграл от на некотором интервале частот дает мощность, которая связана с этими частотами; поскольку функция – четная, результат интегрирования на нужно удвоить, чтобы учесть также и полосу ;

3) площадь под кривой определяет средний квадрат случайного процесса (для центрированного процесса он равен дисперсии):

Множитель нужен для согласования единиц измерения, поскольку угловая частота измеряется не в герцах, а в рад/с. Учитывая, что функция четная, можно интегрировать ее только при , а результат удвоить.

Взаимная спектральная плотность мощности(взаимный спектр мощности) двух реализаций и стационарных эргодических случайных процессов и определяется как прямое преобразование Фурье над их взаимной ковариационной функцией

или, с учетом соотношения между круговой и циклической частотами ,

Обратное преобразование Фурье связывает взаимные ковариационную функцию и спектральную плотность мощности:

Аналогично (1.32), (1.33) вводится спектральная плотность мощности(спектр мощности) случайного процесса

Функция обладает свойством четности:

Для взаимной спектральной плотности справедливо следующее соотношение:

где – функция, комплексно сопряженная к .

Введенные выше формулы для спектральных плотностей определены как для положительных, так и для отрицательных частот и носят название двухсторонних спектральных плотностей . Они удобны при аналитическом изучении систем и сигналов. На практике же пользуются спектральными плотностями, определенными только для неотрицательных частот и называемыми односторонними (рисунок 1.14):

Рисунок 1.14 – Односторонняя и двусторонняя

спектральные плотности

Выведем выражение, связывающее одностороннюю спектральную плотность стационарного СП с его ковариационной функцией:

Учтем свойство четности для ковариационной функции стационарного СП и функции косинус, свойство нечетности для функции синус, а также симметричность пределов интегрирования. В результате второй интеграл в полученном выше выражении обращается в нуль, а в первом интеграле можно сократить вдвое пределы интегрирования, удвоив при этом коэффициент:

Очевидно, что спектральная плотность мощности случайного процесса является действительной функцией.

Аналогично можно получить обратное соотношение:

Из выражения (1.42) при следует, что

Это означает, что общая площадь под графиком односторонней спектральной плотности равна среднему квадрату случайного процесса. Другими словами, односторонняя спектральная плотность интерпретируется как распределение среднего квадрата процесса по частотам.

Площадь под графиком односторонней плотности, заключенная между двумя произвольными значениями частоты и , равна среднему квадрату процесса в этой полосе частот спектра (рисунок 1.15):

Рисунок 1.15 – Свойство спектральной плотности

Взаимная спектральная плотность мощности является комплексной величиной, поэтому ее можно представить в показательной форме записи через модуль и фазовый угол :


где – модуль;

– фазовый угол;

, – действительная и мнимая части функции соответственно.

Модуль взаимной спектральной плотности входит в важное неравенство

Это неравенство позволяет определить функцию когерентности (квадрат когерентности), которая аналогична квадрату нормированной корреляционной функции:

Второй способ введения спектральных плотностей состоит в непосредственном преобразовании Фурье случайных процессов.

Пусть и – два стационарных эргодических случайных процесса, для которых финитные преобразования Фурье -х реализаций длины определяют в виде

Двусторонняя взаимная спектральная плотность этих случайных процессов вводится с использованием произведения через соотношение

где оператор математического ожидания означает операцию усреднения по индексу .

Расчет двусторонней спектральной плотности случайного процесса осуществляют по соотношению

Аналогично вводятся и односторонние спектральные плотности:

Функции , определенные формулами (1.49), (1.50), идентичны соответствующим функциям, определенным соотношениями (1.32), (1.33) как преобразования Фурье над ковариационными функциями. Это утверждение носит называние теоремы Винера-Хинчина.

Контрольные вопросы

1. Приведите классификацию детерминированных процессов.

2. В чем отличие между полигармоническими и почти периодическими процессами?

3. Сформулируйте определение стационарного случайного процесса.

4. Какой способ усреднения характеристик эргодического случайного процесса предпочтителен – усреднение по ансамблю выборочных функций или усреднение по времени наблюдения одной реализации?

5. Сформулируйте определение плотности распределения вероятности случайного процесса.

6. Запишите выражение, связывающее корреляционную и ковариационную функции стационарного случайного процесса.

7. В каком случае два случайных процесса считаются некоррелированными?

8. Укажите способы расчета среднего квадрата стационарного случайного процесса.

9. Каким преобразованием связаны спектральная плотность и ковариационная функции случайного процесса?

10. В каких пределах изменяются значения функции когерентности двух случайных процессов?

Литература

1. Сергиенко, А.Б. Цифровая обработка сигналов / А.Б. Сергиенко. – М: Питер, 2002.– 604 с.

2. Садовский, Г.А. Теоретические основы информационно-измерительной техники / Г.А. Садовский. – М.: Высшая школа, 2008. – 480 с.

3. Бендат, Д. Применение корреляционного и спектрального анализа / Д. Бендат, А. Пирсол. – М.: Мир, 1983. – 312 с.

4. Бендат, Д. Измерение и анализ случайных процессов / Д. Бендат, А. Пирсол. – М.: Мир, 1974. – 464 с.

Ниже приводится краткое описание некоторых сигналов и опре­деляются их спектральные плотности. При определении спектраль­ных плотностей сигналов, удовлетворяющих условию абсолютной интегрируемости, пользуемся непосредственно формулой (4.41).

Спектральные плотности ряда сигналов приведены в табл. 4.2.

1) Импульс прямоугольной формы (табл. 4.2, поз. 4). Колебание, изобра­женное на рис. (4.28, а), можно записать в виде

Его спектральная плотность

График спектральной плотности (рис. 4.28, а) построен на основе прове­данного ранее анализа спектра периодической последовательности однополярных, прямоугольных импульсов (4.14). Как видно из (рис. 4.28, б), функция обра­щается в нуль при значениях аргумента = n , где п - 1, 2, 3, ... - лю­бое целое число. При этом угловые частоты равны = .

Рис. 4.28. Импульс прямоугольной формы (а) и его спектральная плотность (б)

Спектральная плотность импульса при численно равна его площади, т.еG (0)=A . Это положение справедливо для импульса s (t ) произвольной формы. Действительно, полагая в общем выражении (4.41) = 0, получим

т. е. площадь импульса s (t ).

Таблица 4.3.

Сигнал s (t )

Спектральная плотность

При растягивании импульса расстояние между нулями функциисокращается, т. е. происходитсжатие спектра. Значение при этом возра­стает. Наоборот, при сжатии импульса происходит расширение его спектра а значение уменьшается. На (рис. 4.29, а, б) приведены графики амплитудного и фазового испектров прямоугольного импульса.

Рис. 4.29. Графики амплитудного (а) Рис. 4.30. Импульс прямоугольной формы, и фазового (б) спектров сдвинутый на время

При сдвиге импульса вправо (за­паздывание) на время (рис. 4.30) фазовый спектр изменяется на величи­ну, определяемую аргументом множителяexp() (табл. 4.2, поз. 9). Результирующий фазовый спектр запаздывающего импульса изо­бражен на рис. 4.29, б пунктирной ли­нией.

2) Дельта-функция (табл. 4.3, поз. 9). Спектральную плотность – функции находим по формуле (4.41), используя фильтрующее свойствоδ -функции:

Таким образом, амплитудный спектр равномерный и определяется пло­щадьюδ -функции [= 1], а фазовый спектр равен нулю [= 0].

Обратным преобразованием Фурье от функции = 1 пользуются как одним из определенийδ -функции:

Пользуясь свойством временного сдвига (табл. 4.2, поз. 9), определяем спект­ральную плотность функции , запаздывающей на время относительно:

Амплитудный и фазовый спектры функции показаны в табл. 4.3, поз. 10. Обратное преобразование Фурье от функции имеет вид

3) Гармоническое колебание (табл. 4.3, поз. 12). Гармони­ческое колебание не является абсолютно интегрируемым сигналом. Тем не ме­нее для определения его спектральной плотностиприменяют прямое пре­образование Фурье, записывая формулу (4.41) в виде:

Тогда с учетом (4.47) получаем

δ(ω) – дельта-функции, смещенные по оси частот на частоту , соответственно вправо и влево относительно. Как видно из (4.48), спектральная плотность гармонического колебания с конечной амплитудой принимает бесконечно боль­шое значение на дискретных частотахи.

Выполняя аналогичные преобразования, можно получить спектральную плотность колебания (табл. 4.3, поз. 13)

4) Функция вида (табл. 4.3, поз. 11)

Спектральная плотность сигнала в виде постоянного уровня А определяется по формуле (4.48), положив = 0:

5) Единичная функция (или единичный скачок) (табл. 4.3, поз. 8). Функция не является абсолютно интегрируемой. Если представить как предел экспоненциального импульса , т. е.

то спектральную плотность функцииможно определить как предел спектральной плотности экспоненциального импульса (табл. 4.3, поз. 1) при :

Припервое слагаемое в правой части этого выражения равно нулю на всех частотах, кроме= 0, где оно обращается в бесконечность, а площадь под функцией равна постоянной величине

Поэтому пределом первого слагаемого можно считать функцию . Преде­лом второго слагаемого является функция. Окончательно получим

Наличие двух слагаемых в выражении (4.51) согласуется с представлением функции в виде 1/2+1/2sign(t ). Постоянной составляющей 1/2 со­гласно (4.50) соответствует спектральная плотность , а нечетной функции - мнимое значение спектральной плотности .

При анализе воздействия единичного скачка на цепи, передаточная функция которых при = 0 равна нулю (т. е. на цепи, не пропускающие по­стоянный ток), в формуле (4.51) можно учитывать только второе слагаемое, представляя спектральную плотность единичного скачка в виде

6) Комплексный экспоненциальный сигнал (табл. 4.3, поз. 16). Если представить функциюв виде

то на основании линейности преобразования Фурье и с учетом выражений (4.48) и (4.49) спектральная плотность комплексного экспоненциального сигнала

Следовательно, комплексный сигнал обладает несимметричным спект­ром, представленным одной дельта-функцией, смещенной на частотувправо относительно.

7) Произвольная периодическая функция. Представим произвольную перио­дическую функцию (рис. 4.31, а) комплексным рядом Фурье

где - частота следования импульсов.

Коэффициенты ряда Фурье

выражаются через значения спектральной плотности одиночного импуль­са s (t ) на частотах (n =0, ±1, ±2, ...). Подставляя (4.55) в (4.54) и поль­зуясь соотношением (4.53), определяем спектральную плотность перио­дической функции:

Согласно (4.56) спектральная плотность произвольной периодической функции имеет вид последовательности-функций, смещенных друг от­носительно друга, на частоту (рис. 4.31, б). Коэффициенты при δ -функциях изменяются в соответствии со спектральной плотностьюодиночного им­пульсаs (t ) (пунктирная кривая на рис. 4.31,б).

8) Периодическая последовательность δ-функций (табл. 4.3, поз. 17). Спект­ральная плотность периодической последовательности –функций

определяется по формуле (4.56) как частный случай спектральной плотности периодической функции при = 1:

Рис.4.31. Произвольная последовательность импульсов (а) и её спектральная плотность (б)

Рис. 4.32. Радиосигнал (а), спектральные плотности радиосигнала (в) и его огибающей (б)

и имеет вид периодической последовательности δ -функций, умноженных на ко­эффициент .

9) Радиосигнал с прямоугольной огибающей. Радиосигнал, представленный на (рис. 4.32,а), можно записать как

Согласно поз. 11 табл.4.2 спектральная плотность радиосигнала полу­чается путем сдвига спектральной плотностипрямоугольной огибающей по оси частот на вправо и влево с уменьшением ординат в два раза, т. е.

Это выражение получается из (4.42) путем замены частоты на частоты– сдвиг вправо и- сдвиг влево. Преобразование спектра огибающейпоказано на (рис. 4.32, б, в).

Примеры расчета спектров непериодических сигналов приведены так же в .