Способы синхронизации в системах пдс. Основные параметры и характеристики системы пдс

Введение 3 1. Синхронизация в системах ПДС 4 1.1 Классификация систем синхронизации 4 1.2 Поэлементная синхронизация с добавлением и вычитанием импульсов (принцип действия). 5 1.3 Параметры системы синхронизации с добавлением и вычитанием импульсов 8 1.4 Расчет параметров системы синхронизации с добавлением и вычитанием импульсов 13 2. Кодирование в системах ПДС 19 2.1 Классификация кодов 19 2.2 Циклические коды 20 2.3 Построение кодера и декодера циклического кода. Формирование кодовой комбинации циклического кода 22 3 Системы ПДС с обратной связью 28 3.1 Классификация систем с ОС 28 3.2 Временные диаграммы для систем с обратной связью и ожиданием для неидеального обратного канала 30 Заключение 32 Список литературы 33

Введение

Проблема передачи информации на значительные расстоянии за возможно более короткое время и с меньшими ошибками, остается актуальной до настоящего времени, хотя в процессе развития телекоммуникационных технологий, было придумано и с успехом применяется, множество способов передачи данных. Каждый из них обладает своими особенными достоинствами, а также и недостатками. Устройства передачи дискретных сообщений, в настоящее время, играют значительную роль в жизни человеческого общества. Их повсеместное использование позволяет обеспечить лучшее использование вычислительной техники посредством организации вычислительных сетей и сетей передачи данных. Современное общество уже невозможно представить без достижений, сделанных в отрасли технологии передачи дискретных сообщений, за немногим более, ста лет развития. Используемая техника ПДС позволяет создать мощные вычислительные сети и сети передачи данных Актуальность данной работы заключается в том, что непрерывно растущая потребность в передаче потоков информации на большие расстояния, является одной из отличительных особенностей нашего времени. Помимо этого, практически ни одна организация не может функционировать без техники ПДС, без нее невозможна организация корпоративных компьютерных сетей, которые позволяют значительно сократить время обмена информацией между подразделениями. Цель и задачи курсовой работы заключаются в рассмотрении теоретических вопросов синхронизации и кодирования в системах ПДС, рассмотрение систем ПДС с обратной связью ОС, а также решение задач согласно варианта. Работа состоит из введения, трех разделов, заключения и списка литературы. Общий объем работы составляет 33 страницы.

Заключение

В ходе выполнения курсовой работы были изучены методы стробирования, синхронизация в системах ПДС, кодирование, системы ПДС с ОС, а также влияние ошибок на скорость передачи информации. Были выполнены все задания в соответствии с методическими указаниями. По результатам проделанной работы можно сделать следующие выводы: Ошибки могут возникать проявляться на разных этапах приема сигнала: при регистрации, при установлении синхронизации. В условиях сильных искажений сигнала, в канале связи будут присутствовать ошибки при регистрации, при увеличении погрешности синхронизации, так же будет увеличиваться количество ошибок. Увеличение количества ошибок приводит к снижению скорости передачи. Для обнаружения и исправления ошибок, используется помехоустойчивое кодирование, что также снижает скорость передачи. Использование эффективного кодирования, которое позволяет устранить избыточность сообщения, дает возможность уменьшить среднее количество элементов на сообщение и тем самым, увеличить скорость передачи.

Список литературы

1. Емельянов Г.А., Шварцман В.О. Передача дискретной информации. Учебник для вузов. - М.: Радио и связь, 1982. - 240 с. 2. Кунегин С.В. Системы передачи информации. Курс лекций. – М., 1997 – 317 с. 3.Крук Б. Телекоммуникационные системы и сети. Т. 1. Учеб. пособие. - Новосибирск.: СП «Наука» РАН, 1998. - 536 с. 4.Олифер В.Г., Олифер Н.А.. Основы сетей передачи данных. – М.: ИНТУИТ. РУ “Интернет - Университет информационных технологий”, 2003. – 248 с. 5.Основы передачи дискретных сообщений. Учебник для вузов / Под ред. В.М. Пушкина. - М.: Радио и связь, 1992. - 288 с. 6. Пескова С.А., Кузин А.В., Волков А.Н. Сети и телекоммуникации. - М.:Асadema, 2006. 7. Сети ЭВМ и телекоммуникации. Конспект лекций. СибГУТИ, Новосибирск, 2016г. 8. Тимченко С.В., Шевнина И.Е. Изучение устройства поэлементной синхронизации с добавлением и исключением импульсов системы передачи данных: Практикум / ГОУ ВПО «СибГУТИ». – Новосибирск, 2009. – 24с. 9.Телекоммуникационные системы и сети. Том 3. Современные технологии. Изд. 3. Горячая линия – Телеком, 2005. 10. Шувалов В.П., Захарченко Н.В., Шваруман В.О. Передача дискретных сообщений / Под ред. Шувалова В.П. – М.: Радио и связь – 1990

Дискретные сообщения, поступающие от источника и предназначенные для передачи удаленному получателю, подвергаются в системах ПДС различным преобразованиям. Эти преобразования могут быть как специально предусмотренными и направленными на достижение определенных результатов, так и нежелательными, приводящими к искажениям и ошибкам.

Последовательность основных преобразований в системах ПДС может быть представлена схемой, изображенной на рис.1.2 и отображающей три группы преобразований:

    преобразования в передатчике,

    преобразования в приёмнике,

    преобразования в непрерывном канале связи (НКС).

Цель обработки в передатчике заключается в преобразовании передаваемого сообщения α(t) в электрический сигнал S(t), максимально приспособленный для передачи по НКС. Сигнал S(t) подвергается в НКС действию помех и искажений и поэтому на вход приёмника поступает сигнал S * (t), отличающийся от S(t). Задача приёмника заключается в преобразованиях сигнала S * (t), обеспечивающих получение сообщения α * (t) с минимальными ошибками относительно передаваемого сообщения α(t).

Рис.1.2. Структура преобразований в системе ПДС

Условные обозначения:

ИС – источник дискретных сообщений;

КИ – кодер источника;

М – модулятор;

КК – кодер канала;

ПРД – передатчик;

НКС – непрерывный канал связи;

ДМ – демодулятор;

ДКП – декодер получателя;

ДКК – декодер канала;

ПС – получатель сообщений;

ПРМ – приёмник.

Сообщение, поступающее от источника ИС, в некоторых случаях содержит избыточность, обусловленную статистической связью символов. В ряде случаев избыточность источника играет положительную роль, например, в телеграфии при исправлении части искаженных слов в телеграмме. Однако, из-за наличия избыточности уменьшается скорость передачи информации, поэтому один из путей повышения скорости передачи информации связан с устранением избыточности источника. Задачу устранения избыточности на передаче в системе ПДС выполняет кодер источника КИ, а восстановление принятого сообщения – декодер получателя ДКП. Часто КИ и ДКП включаются в состав ИС и ПС. Один из способов устранения избыточности связан с применением эффективного (экономного) кодирования , основы которого рассматриваются в 3.1.

Для повышения верности передачи применяется помехоустойчивое кодирование, предполагающее внесение избыточности в предаваемые кодовые комбинации. На передаче для этой цели используется кодер канала КК, а на приёмной стороне – декодер канала ДКК, выполняющий обратное преобразование.

Для согласования кодера и декодера канала с непрерывным каналом связи на передаче используется модулятор М, а на приёме – демодулятор.

Рассмотренные преобразования ориентированы на симплексный режим работы, но легко могут быть обобщены на полудуплексный и дуплексный режимы. Для этой цели каждую из взаимодействующих сторон нужно обеспечить приёмной и передающей аппаратурой.

1.4. Структурная схема системы пдс

В современной аппаратуре связи основные этапы преобразований сообщения выполняются соответствующими аппаратными или программными средствами. В большинстве случаев эти средства выполняются в виде автономных блоков. Взаимодействие этих блоков иллюстрируется структурной схемой системы ПДС., которая представлена на рис. 1.3.

Рис 1.3. Структурная схема системы ПДС

Условные обозначения:

ИПС – источник-получатель сообщений;

ОУ – оконечное устройство;

УВВ – устройство ввода/вывода;

УС – устройство согласования;

УЗО – устройство защиты от ошибок;

УПС – устройство преобразования сигналов;

АКД – аппаратура окончания канала данных;

ООД – оконечное оборудование данных;

АПД – аппаратура передачи данных;

АП – абонентский пункт.

Рассмотрим предназначение основных блоков, позволяющих реализовать двухстороннюю передачу (полудуплексный и дуплексный режимы).

В качестве источника-получателя сообщения ИПС может быть какое-либо устройство ввода-вывода, например, терминал, дисплей, телеграфный аппарат, ПЭВМ. Обычно ИПС преобразует символы первичного алфавита в кодовые комбинации вторичного алфавита. Устройство согласования (сопряжения) УС обеспечивает согласование ИПС с последующей аппаратурой, например, преобразование параллельного кода в последовательный и наоборот. Конструктивное объединение ИПС и УС называется оконечным оборудованием данных ООД. Устройство защиты от ошибок УЗО предназначено для повышения верности передачи дискретных сообщений, в большинство случаев, методами помехоустойчивого кодирования. Иногда УЗО включается в состав ООД, особенно при программной реализации помехоустойчивого кодирования. По рекомендации Х.92 МСЭ-Т ООД называется DTE (Data Terminal Equipment) и условно обозначается

Наряду с функцией помехоустойчивого кодирования / декодирования УЗО обеспечивает задание формата сообщений и режимов работы с обратной связью или без нее. Устройство преобразования сигналов УПС обеспечивает согласование дискретных сигналов с каналом связи. В ряде случаев используется конструктивное объединение УПС и УЗО, которое называется аппаратурой передачи данных АПД. По рекомендации Х.92 МСЭ-Т АПД называется DCE (Data Circuit Terminating Equipment) и условно обозначается

Назначение DCE заключается в обеспечении передачи сообщений между двумя или большим числом DTE по каналу определенного типа. Для этого DCE должен обеспечивать с одной стороны сопряжение с DTE, а с другой стороны – сопряжение с каналом передачи. В частности DCE выполняет функции модулятора и демодулятора (модема), если используется непрерывный (аналоговый) канал связи. При использовании цифрового канала E1 / T1 или ISDN в качестве DCE применяется устройство обслуживания канала / данных (CSU / DSU – Channel Service Unit / Data Service Unit).

В современных системах ПДС защита от ошибок возлагается на ООД, а УПС предназначен для сопряжения ООД с каналом связи, который в терминах МСЭ-Т называют аппаратурой окончания канала данных АКД. Оборудование связи, расположенное у пользователя и предназначенное для организации системы ПДС, называется абонентским пунктом АП. Под системой ПДС понимается совокупность аппаратных и программных средств, обеспечивающих передачу дискретных сообщений от источника к получателю с соблюдением заданных требований по времени доставки, верности и надежности.

УПС совместно с каналом связи образуют дискретный канал ДК, т.е. канал предназначенный для передачи только дискретных сигналов.(цифровых сигналов данных). Различают синхронные и асинхронные дискретные каналы. В синхронных дискретных каналах единичные элементы вводятся в строго определенные моменты времени. Эти каналы называются кодозависимыми или непрозрачными и предназначены для передачи только изохронных сигналов. К синхронным каналам относятся, в частности, каналы, образованные методами временного разделения каналов ВРК. По асинхронным дискретным каналам можно передавать любые сигналы: изохронные и анизохронные. Поэтому такие каналы получили название прозрачных или кодонезависимых . К ним относятся каналы, образованные методами частотного разделения каналов ЧРК.

Дискретный канал в совокупности с УЗО называется каналом передачи данных КПД. В /1/ этот канал предлагается называть расширенным дискретным каналом РДК.

102 страницы (Word-файл)

Посмотреть все страницы

Фрагмент текста работы

2.1. Структура курса. Основные термины и определения. Структура единой сети электросвязи (ЕСЭ) РФ. Методы коммутации в сетях передачи данных. Виды сигналов. Параметры цифровых сигналов данных.

2.2. Структурная схема системы передачи дискретных сообщений. Непрерывный канал и КПТ. Краевые искажения и дробления. Методы регистрации. Дискретный канал. Каналы с памятью. Расширенный дискретный канал и его параметры. Характеристики СПДС.

2.3. Принципы эффективного кодирования. Метод Хаффмана. Словарные методы ZLW.

2.4. Помехоустойчивое кодирование. Линейные коды. Производящая и проверочная матрицы линейного кода Хемминга. Кодер. Декодер. Циклические коды. Построение кодера и его работа. Декодер с обнаружением ошибок.

Алгоритм определения ошибочного разряда. Декодеры с исправлением ошибок. Кодек Рида-Соломона. Итеративные и каскадные коды. Сверточные коды. Построение кодера и его работа. Диаграмма состояний и решетчатая диаграмма. Декодирование по алгоритму Витерби.

2.5. Адаптивные системы. Системы с ИОС. Системы с РОС-ОЖ. Расчет достоверности и скорости передачи информации.

2.6. Методы сопряжения источника дискретных сообщений с дискретным каналом. DTE/DCE, RS-232 и др.

2.7. Синхронизация. Виды поэлементной синхронизации. Техническая реализация. Расчет параметров синхронизации. Групповая, цикловая синхронизация.

2.8. УПС. Классификация. Перекодирование. АМ, ЧМ, ФМ. Модуляторы и демодуляторы. Относительная фазовая модуляция. Многопозиционная фазовая и амплитудно-фазовая модуляции. DMT, Треллис модуляция. Обзор xDSL технологии. OFDM. Радиомодемы, спутниковые модемы.

2.9. Компьютерные сети ПД. Принципы построения. Классификация. Назначение ЛВС. Типы ЛВС. Топологии сетей. Основные среды передачи в ЛВС. Технологии сетей передачи данных в операторских сетях. Корпоративные сети ПД, VPN. Модель взаимодействия открытых систем. Сетевые модели OSI и IEEE. Взаимодействия между уровнями. Примеры протоколов разных уровней. Стеки протоколов. Методы доступа к среде передачи. Сетевые архитектуры: Ethernet, Token Ring. Устройства расширения ЛВС. Репитер, мост, коммутатор, маршрутизатор, IP адресация.

Методы маршрутизации. Взаимодействие прикладных процессов через протокол TCP. Шлюзы.

ОСНОВЫ ПЕРЕДАЧИ ДИСКРЕНЫХ СООБЩЕНИЙ

Лекция №1.

Структура курса. Основные термины и определения.

Лекций 34 часа;

Практические занятия 17 часов;

Лабораторные работы 17 часов.

Темы лекций:

1. Структура курса. Основные термины и определения;

2. Структурная схема системы ПДС;

3. Принцип эффективного кодирования;

4. Помехоустойчивое кодирование;

5. Методы сопряжения источника дискретных сообщений и дискретным каналом;

6. Синхронизация;

7. Устройства преобразования сигналов (УПС);

8. Адаптивные системы;

9. Методы коммутации в сети ПДС;

10. Компьютерные сети передачи данных.

Документальная электросвязь – это такой вид электросвязи, где сообщение можно отобразить на какой-либо носитель (бумага, экран монитора).

Службы:

Телеграфные ТГСОП;

Телефонные;

Телексные АТ/Телекс;

Факсимильные СФС:

Факс-сервер; сети

Дэйтафакс;

Передача газетных полос ПГП;

Видеотекст (электронная почта).

Телематические.

Способы распределения информации в сетях ПДС:

1. Коммутация каналов;

2. Коммутация с накоплением:

Коммутация сообщений;

Коммутация пакетов.

Коммутация каналов (КК) – установка соединения, передача сообщения в обе стороны, разрушение.

Коммутация каналов:

Коммутация с накоплением. ТФСОП :

УУ – Управляющее устройство;

НУ – Накопительное устройство;

ВЗУ – Внешнее запоминающее устройство.

Сообщение передается по участкам сети, запоминается в УК. Состоит из заголовка и данных. Отсутствует фаза установления и разъединения.

Заголовок читается Находится адрес УК Получатель

Коммутация сообщений (КС) ТГСОП.

Заголовок состоит из семи уровней. На каждом уровне сообщение обрабатывается и хранится во внешней памяти.

Основной минус КС в том, что необходимо иметь большую память, так как передаются сообщения разных длин.

Примечание: ЦКС на ЭВМ (ЦКС – центр. ком. сообщ.).

В компьютерных сетях, телематических службах (почтовые сообщения).

Коммутация пакетов:

Сообщение разбивается на пакеты. Отсутствует НУ. Время задержки сообщений меньше. Высокая скорость обработки.

Применяется в:

Компьютерных сетях;

Ethernet: на 1 и2 уровне заголовок сохраняется, а затем нет;

ТФСОП; ССПО

Используют коммутацию пакетов протоколов.

NGN – Next Generation Network (пакетная сеть);

IP – телефония.

На транспортном уровне используются следующие протоколы:

ТСР (с установлением виртуального соединения (виртуальный канал));

UDP – (без установления соединения (датаграммный режим)).

ВВК – Временной виртуальный коммутатор (устанавливается пользователем).

ПВК – Постоянный временной канал (устанавливается администратором).

В датаграммном режиме каждый пакет передается независимо друг от друга. Используется для передачи коротких сообщений.

Протокол ТСР более надежный.

Перемешивание пакетов – пакеты проходят по разным путям, появляются в разное время.

Лекция №2.

Структурная схема системы ПДС.

В основном система передачи данных использует коммутацию пакетов.

Все системы используют дискретные сообщения. Для передачи которых используются дискретные сигналы (двухуровневые).

е.э – единичный элемент.

Такой сигнал поступает в канал связи, в зависимости от канала необходимо делать преобразование. В канале связи на сигнал действуют помехи – внешние и внутренние. Поэтому используется помехоустойчивое кодирование.

Источник ДС (0:1) Канал связи (0:1) ДС Получатель

В телеграфной связи помехоустойчивое кодирование применяется редко.

Для телематических служб и СПД – обязательно.

Для передачи сообщений кроме помехоустойчивого кодирования часто используют методы сжатия информации.

Структурная схема системы ДЭС:

ИС – источник сообщения, поступ. дискр. сообщ., еще называется кодером источника или оборудованием обработки данных.

УЗО – устройство защиты от ошибок, добавляет проверочные «r» битов к битам информации «к», еще называется канальным кодером.

УПС – устройство преобразования сигнала – преобразует сигнал в форму, подходящую для передачи в канал связи.

УЗО и УПС объединяются в АПД – аппаратуру передачи данных.

ПС – приемник сообщений.

ДК – дискретный канал.

КПД – канал передачи данных.

В качестве первичного кода используется МКТ-2 (n=5, ).

На муждугородной связи – МКТ-5 (СКПД) =128.

Первичные коды не могут обнаруживать и исправлять ошибки.

В системах с ОС ввод в передаваемую информацию избыточности производится с учетом состояния дискретного канала. С ухудшением состояния канала вводимая избыточность увеличивается, и наоборот, по мере улучшения состояния канала она уменьшается.

В зависимости от назначения ОС различают системы:

с решающей обратной связью (РОС)

информационной обратной связью (ИОС)

с комбинированной обратной связью (КОС)

Рисунок 21 – Схема системы ПДС с РОС.

Рисунок 22 – Схема системы ПДС с ИОС.

В системе с РОС приемник, приняв кодовую комбинацию и проанализировав ее на наличие ошибок, принимает окончательное решение о выдаче комбинации потребителю информации или о ее стирании и посылке по обратному каналу сигнала о повторной передаче этой кодовой комбинации. Поэтому системы с РОС часто называют системами с переспросом, или системами с автоматическим запросом ошибок (АЗО).В случае принятия кодовой комбинации без ошибок приемник формирует и направляет в канал ОС сигнал подтверждения, получив который, передатчик ПКпер передает следующую кодовую комбинацию. Таким образом, в системах с РОС активная роль принадлежит приемнику, а по обратному каналу передаются вырабатываемые им сигналы решения.

В системах с ИОС по обратному каналу передаются сведения о поступающих на приемник кодовых комбинациях до их окончательной обработки и принятия заключительных решений. Частным случаем ИОС является полная ретрансляция поступающих на приемную строку КК или их элементов. Эти системы получили название ретрансляционных. Если количество информации, передаваемое по каналу ОС, равно количеству информации в сообщении, передаваемому по прямому каналу, то ИОС называется полной. Если содержащаяся в квитанции информация отражает лишь некоторые признаки сообщения, то ИОС называется укороченной. Таким образом, по каналу ОС передается или вся полезная информация, или информация о ее отличительных признаках, поэтому такая ОС называется информационной.

Полученная по каналу ОС информация анализируется передатчиком, и по результатам анализа передатчик принимает решение о передаче следующей КК или о повторении ранее переданных. После этого передатчик передает служебные сигналы о принятых решениях, а затем соответствующие КК. Приемник ПКпр или выдает накопленную кодовую комбинацию получателю, или стирает ее и запоминает вновь переданную. В системах с укороченной ИОС меньше загрузка обратного канала, но больше вероятность появления ошибок по сравнению с полной ИОС.

В системах с КОС решение о выдаче КК получателю информации или о повторной передаче может приниматься и в приемнике, и в передатчике системы ПДС, а канал ОС используется для передачи, как квитанций, так и решений.

Системы ОС:

    с ограниченным числом повторений (КК повторяется не более L раз)

    с неограниченным числом повторений(КК повторяется до тех пор, пока приемник или передатчик не примет решение о выдаче этой комбинации потребителю).

Системы с ОС могут отбрасывать либо использовать информацию, содержащуюся в забракованных КК, с целью принятия более правильного решения. Система первого типа называется системой без памяти, а второго- с памятью.

Системы с ОС являются адаптивными: темп передачи информации по каналам связи автоматически приводится в соответствие с конкретными условиями прохождения сигналов.

Исследования показали, что при заданной верности передачи оптимальная длина кода в системах с ИОС несколько меньше, чем в системах с РОС, что удешевляет реализацию устройств кодирования и декодирования. Однако общая сложность реализации систем с ИОС больше, чем систем с РОС. Поэтому системы с РОС нашли более широкое применение. Системы с ИОС применяются в тех случаях, когда обратный канал может быть без ущерба для других целей эффективно использован для передачи квитанций.