Нелинейные элементы аппроксимация нелинейных характеристик. Способы аппроксимации характеристик нелинейных элементов. Аппроксимация вольт-амперных характеристик нелинейных элементов

ЛЕКЦИЯ № 16

АППРОКСИМАЦИЯ ВАХ НЕЛИНЕЙНЫХ ЭЛЕМЕНТОВ. МЕТОДЫ РАСЧЕТА НЕДИНЕЙНЫХ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ

Учебные вопросы

1. Аппроксимация ВАХ нелинейных элементов. Полиномиальная аппроксимация.

2. Кусочно-линейная аппроксимация.

3. Классификация методов анализа нелинейных цепей.

4. Аналитические и численные методы анализа нелинейных цепей постоянного тока.

7. Ток в нелинейном резисторе при воздействии синусоидального напряжения.

8. Основные преобразования, осуществляемые с помощью нелинейных электрических цепей переменного тока.

1. Аппроксимация вольт-амперных характеристик нелинейных элементов

Вольт-амперные характеристики реальных элементов электрических цепей обычно имеют сложный вид и представляются в виде графиков или таблиц экспериментальных данных. В ряде случаев непосредственное применение ВАХ, задаваемых в такой форме, оказывается неудобным и их стремятся описать с помощью достаточно простых аналитических соотношений, качественно отражающих характер рассматриваемых ВАХ.

Замена сложных функций приближенными аналитическими выражениями называется аппроксимацией .

Аналитические выражения, аппроксимирующие ВАХ нелинейных резистивных элементов, должны как можно более точно описывать ход реальных характеристик.

Следовательно, задача аппроксимации ВАХ включает в себя две самостоятельные задачи:

1) выбор аппроксимирующей функции;

2) определение значений входящих в эту функцию постоянных коэффициентов наиболее часто используются два вида аппроксимации ВАХ нелинейных элементов:

Полиномиальная;

Кусочно-линейная.

1.1. Полиномиальная аппроксимация

Аппроксимация степенным полиномом выполняется на основе формулы ряда Тейлора для ВАХ НЭ:

т.е. ВАХ в данном случае должна быть непрерывной, однозначной и абсолютно гладкой (должна иметь производные любого порядка).

В практических расчетах обычно ВАХ не дифференцируют, а требуют, например, чтобы аппроксимирующая кривя (16.5) прошла через заданные токи.

В так называемом методе трех точек необходимо, чтобы некоторые три точки ВАХ:

(i 1 , u 1), (i 2 , u 2), (i 3 , u 3) – отвечали номиналу (16.5) (рис.16.9).

Из уравнений

несложно найти искомые коэффициенты a 0 , a 1 , a 2 , поскольку относительно их система (16.6) линейна.

Если ВАХ сильно изрезана и требуется отразить ее особенности, необходимо учитывать большее число точек ВАХ. Система типа (16.6) становится сложной, однако ее решение может быть найдено по формуле Лагранжа, определяющей уравнение полинома, проходящего через n точек:

(16.7)

где A k (u ) = (u u 1) ... (u u k-1) (u u k+1) ... (u u n).

Пример . Пусть нелинейный элемент имеет ВАХ, заданную графически (рис.16.10).

Требуется аппроксимировать ВАХ ИЭ степенным полиномом.

На графике ВАХ выделяются четыре точки с координатами:

На основании формулы Лагранжа (16.7) получим




Таким образом, аппроксимирующая функция имеет вид

и нэ = -6,7i 3 + 30i 2 – 13,3i .

2. Кусочно-линейная аппроксимация

При кусочно-линейной аппроксимации ВАХ НЭ аппроксимируетсясовокупностью линейных участков (кусков) вблизи возможных рабочих точек.

Пример . Для двух участков нелинейной ВАХ (рис.16.11) получим:

Пример . Пусть требуется линеаризировать участок ВАХ между токамиА иВ , который используется в качестве рабочей области около рабочей точкиР (рис.16.12).

Тогда уравнение линеаризированного участка ВАХ вблизи рабочей точки Р будет

Очевидно, что аналитическая аппроксимация ВАХ верна только для выбранного участка линеаризации.

Как указывалось ранее, удобными характеристиками нелинейных элементов являются не уравнения связи, а вольтамперная характеристика активного сопротивления
или
, или зависимость
- для нелинейной индуктивности (ампервеберная характеристика), или зависимостьq(u) – для нелинейной емкости (вольткулонная характеристика) (рис.3.8).

Рис.3.8. Виды характеристик нелинейных элементов

Однако, графическая форма характеристик нелинейных элементов (рис.3.8.) не позволяет использовать зависимости (3.1-3.15), для составления уравнений работы схем с нелинейными элементами. Поэтому одной из важнейших задач, которая возникает при анализе колебаний в схемах, содержащих нелинейные элементы, состоит в аппроксимации нелинейных характеристик. Наибольшее распространение аппроксимаций нелинейных характеристик получили полиномиальная и кусочно-линейная, а также аппроксимация с помощью различных видов трансцендентных функций.

При анализе нелинейных схем возможность получить правильный результат существенно зависит как от правильности выбора метода аппроксимации, так и от выражения аппроксимирующей функции нелинейного элемента. Возникает определенное противоречие – чем точнее аппроксимация нелинейного элемента, тем сложнее получить нужное аналитическое выражение характеристики нелинейного элемента. Но кроме этого, сложнее построить и решение нелинейного уравнения, описываюшего колебания в такой нелинейной системе, с помощью выбранного выражения аппроксимирующей функции. Поэтому правильный выбор аппроксимации нелинейной характеристики позволяет существенно упростить построение решения нелинейного уравнения. Кроме того необходимо отметить, что очень часто одну и ту же характеристику нелинейного элемента приходится по-разному аппроксимировать в зависимости от того, в каких условиях работает нелинейный элемент и какие вопросы должны быть исследованы. Поэтому, способы аппроксимации выбирают в каждом конкретном случае исследования колебаний в схемах с нелинейными элементами различными.

Рассмотрим способы аппроксимации различных функций нелинейных элементов. К наиболее распространенным способам аппроксимации нелинейных элементов относят следующие:

    полиномиальная аппроксимация ─ представление нелинейной характеристики с помощью степенного ряда,

    кусочно-линейная аппроксимация ─ представление аппроксимируемой функции отрезками прямых линий,

    аппроксимация с помощью различных видов трансцендентных функций.

Полиномиальная аппроксимация. Если любая из нелинейных характеристик задана аналитическим выражением, то в окрестности рабочей точки функция может быть представлена разложением в ряд Тейлора (
в окрестности точки х 0)

, (3.16)

где R – остаток в разложении в ряд Тейлора, которым пренебрегают при аппроксимации.

Если же характеристика задана графически (рис.3.9), то аппроксимацию можно осуществить укороченным степенным рядом (полином), ограничивая его второй - пятой степенью

Рис.3.9. Графическое представление нелинейной характеристики

Для определения коэффициентов а k требуем, чтобы при значениях переменной x k в левой части полинома (3.17) получались значения функции y k .

Составляем систему уравнений:

, где
. (3.18)

В этой системе уравнений y n , у 0 , x n , x 0 – известные величины, поэтому эту систему можно решить по методу Крамера, относительно коэффициентов a k .

Если x=x 0 +S (х 0 постоянное смещение, а S малый сигнал), то

где α – дифференциальный параметр нелинейного элемента. Таким образом, можно отметить, что первый коэффициент a 1 полиномиальной аппроксимации нелинейной характеристики (3.17) совпадает с дифференциальным параметром нелинейного элемента. Кроме того отметим, что если х=0 лежит внутри интервала (х 5 -х 1) аппроксимации нелинейной характеристики полиномом, то коэффициент а 0 определяет значение функции в начале координат (т.е. если мы рассматриваем в качестве нелинейной характеристики i=φ(u), то коэффициент а 0 =i(0) определяется как значение тока при u=0.

Кусочно-линейная аппроксимация. Кусочно-линейная аппроксимация основана на замене реальной характеристики нелинейного элемента отдельными участками, которые заменяются отрезками прямых линий (рис.3.10).

Рис.3.10. Кусочно-линейная аппроксимация нелинейного элемента

Точность кусочно-линейного приближения зависит от количества интервалов, заменяемых отрезками прямых в заданном интервале использования кусочно-линейной аппроксимации. Чем на большее количество отрезков прямых разбит интервал, для которого мы применяем кусочно-линейное приближение, тем выше точность совпадения с реальной нелинейной характеристикой, но при этом сушественно усложняется анализ колебаний в такой системе. Для упрощения расчетов желательно ограничиваться минимальным количеством отрезков прямых, замещающих нелинейную характеристику. Например, динамическую проходную характеристику триода (рис.3.10) можно аппроксимировать с достаточной степенью точности всего лишь тремя отрезками прямых линий:

. (3.20)

Замена нелинейных участков характеристик нелинейных элементов отрезками прямых, прозволяет считать и сами характеристики линейными, а это значит, что применимы теперь все методы линейной теории цепей. На протяжении линейных участков нелинейные элементы заменяются на линейные, с характеристиками равными их дифференциальным величинам.

Аппроксимация нелинейных характеристик с помощью трансцендентных функций. Иногда характеристики нелинейных элементов аппроксимируют трансцендентными функциями рис.3.11. В качестве аппроксимирующих трансцендентных функций применяются экспоненты и их суммы, тригонометрические, обратные тригонометрические, гиперболические и другие функции. Например,

или
. (3.21)

Рис.3.11. Примеры аппроксимации нелинейных характеристик

трансцендентными функциями

Характеристики реальных нелинейных элементов, которые определяют обычно с помощью экспериментальных исследований, имеют сложный вид и представляются в виде таблиц или графиков. В то же время для анализа и расчета цепей необходимо аналитическое представление характеристик, т.е. представление в виде достаточно простых функций. Процесс составления аналитического выражения для характеристик, представленных графически или таблично, называется аппроксимацией.

При аппроксимации решаются следующие проблемы:

1. Определение области аппроксимации, которая зависит от диапазона изменения входных сигналов.

2. Определение точности аппроксимации. Понятно, что аппроксимация дает приблизительное представление характеристики в виде какого-либо аналитического выражения. Поэтому необходимо количественно оценить степень приближения аппроксимирующей функции к экспериментально определенной характеристике. Чаще всего используются:

показатель равномерного приближения – аппроксимирующая функция не должна отличаться от заданной функции более чем на некоторое число , т.е.

показатель среднего квадратического приближения – аппроксимирующая функция не должна отличаться от заданной функции в среднем квадратическом приближении более чем на некоторое число , т.е.

узловое приближение (интерполяционное) – аппроксимирующая функция должна совпадать с заданной функцией в некоторых выбранных точках.

Существуют различные способы аппроксимации. Наиболее часто для аппроксимации ВАХ применяют аппроксимацию степенным полиномом и кусочно-линейную аппроксимацию, реже – аппроксимацию с использованием показательных, тригонометрических или специальных функций (Бесселя, Эрмита и др.).

7.2.1. Аппроксимация степенным полиномом

Нелинейную вольт-амперную характеристику в окрестности рабочей точки представляют конечным числом слагаемых ряда Тейлора:

Количество членов ряда определяется требуемой точностью аппроксимации. Чем больше членов ряда, тем точнее аппроксимация. На практике необходимой точности добиваются, используя аппроксимацию полиномами второй и третьей степени. Коэффициенты – это числа, которые достаточно просто определяются из графика ВАХ, что иллюстрируется примером.

Пример.

Аппроксимировать представленную на рис. 7.1,а ВАХ в окрестности рабочей точки степенным полиномом второй степени, т.е. полиномом вида

Выберем область аппроксимации от 0,2 В до 0,6 В. Для решения задачи необходимо определить три коэффициента . Поэтому ограничимся тремя узловыми точками (в середине и на границах выбранного диапазона), для которых составляем систему трех уравнений:


Рис. 7.1. Аппроксимация ВАХ транзистора

Решая систему уравнений, определяем , , . Следовательно, аналитическое выражение, описывающее график ВАХ, имеет вид

Заметим, что аппроксимация степенным полиномом используется в основном для описания отдельных фрагментов характеристик. При значительных отклонениях входного сигнала от рабочей точки точность аппроксимации может значительно ухудшиться.

Если ВАХ задана не графически, а какой-либо аналитической функцией и возникла необходимость представить ее степенным полиномом, то коэффициенты вычисляются по известной формуле

Нетрудно заметить, что представляет собой крутизну ВАХ в рабочей точке. Значение крутизны существенно зависит от положения рабочей точки.

В некоторых случаях удобнее характеристику представлять рядом Маклорена

7.2.2. Кусочно-линейная аппроксимация

Если входной сигнал изменяется по величине в больших пределах, то ВАХ можно аппроксимировать ломаной линией, состоящей из нескольких отрезков прямых. На рис. 7.1,б показана ВАХ транзистора, аппроксимированная тремя отрезками прямых.

Математическая формула аппроксимированной ВАХ

Данный вид аппроксимации связан с двумя важными параметрами нелинейного элемента: напряжением начала характеристики и ее крутизной . Для увеличения точности аппроксимации увеличивают количество отрезков линий. Однако это усложняет математическую формулу ВАХ.

Как правило, ВАХ нелинейных элементовi = F(u) получают экспериментально, поэтому чаще всего они заданы в виде таблиц или графиков . Чтобы иметь дело с аналитическими выражениями , приходится прибегать к аппроксимации.

Обозначимзаданную таблично или графически ВАХ нелинейного элементаi = F V (u), а аналитическую функцию , аппроксимирующую заданную характеристику, i = F(u, a 0 , a 1 , a 2 , … , a N ). где a 0 , a 1 , … , a N коэффициенты этой функции, которые нужно найти в результате аппроксимации.

А) В методе Чебышева коэффициенты a 0 , a 1 , … , a N функции F(u) находятся из условия:

т. е. они определяются в процессе минимизации максимального уклонения аналитической функции от заданной. Здесь u k , k = 1, 2, ..., G – выбранные значения напряжения u.

При среднеквадратичном приближении коэффициенты a 0 , a 1 , …, a N должны быть такими, чтобы минимизировать величину:

, (2.6)

Б) Приближение функции по Тейлору основано на представлении функции i = F(u)рядом Тейлора в окрестности точкиu = U 0:

и определении коэффициентов этого разложения. Если ограничиться первыми двумя членами разложения в ряд Тейлора, то речь пойдет о замене сложной нелинейной зависимости F(u) более простой линейной зависимостью . Такая замена называемся линеаризацией характеристик.

Первый член разложения F(U 0) = I 0 представляет собой постоянный ток в рабочей точке при u = U 0 , а второй ч лен

дифференциальную крутизну вольт-амперной характеристики в рабочей точке , т. е. при u = U 0 .

В) Наиболее распространенным способом приближения заданной функции является интерполяция (метод выбранных точек), при которой коэффициенты a 0 , a 1 , …, a N аппроксимирующей функции F(u) находятся из равенства этой функции и заданной F x (u)в выбранных точках (узлах интерполяции) u k = 1, 2, ... , N+1.

Д) Степенная (полиномиальная ) аппроксимация. Такое название получила аппроксимация ВАХ степенными полиномами:

Иногда бывает удобно решать задачу аппроксимации заданной характеристики в окрестности точкиU 0 , называемой рабочей . Тогда используют степенной полином



Степенная аппроксимация широко используется при анализе работы нелинейных устройств, на которые подаются относительно малые внешние воздействия , поэтому требуется достаточно точное воспроизведение нелинейности характеристики в окрестности рабочей точки.

Е) Кусочно-линейная аппроксимация. В тех случаях, когда на нелинейный элемент воздействуют напряжения с большими амплитудами, можно допустить более приближенную замену характеристики нелинейного элемента и использовать более простые аппроксимирующие функции . Наиболее часто при анализе работы нелинейного элемента в таком режиме реальная характеристика заменяется отрезками прямых линий с различными наклонами .

С математической точки зрения это означает, что на каждом заменяемом участке характеристики используются степенные полиномы первой степени (N = 1 ) с различными значениями коэффициентов a 0 , a 1 , … , a N .

Таким образом, задача аппроксимации ВАХ нелинейных элементов заключается в выборе вида аппроксимирующей функции и определении ее коэффициентов одним из указанных выше методов.

При исследовании свойств электрических цепей явлением гистерезиса, как правило, можно пренебречь. Лишь при исследовании цепей, в основе действия которых лежит это явление (например, работы запоминающих магнитных устройств с прямоугольной петлей гистерезиса), гистерезис необходимо учитывать.

На рис. 15.11, а изображена типичная симметричная характеристика у = f(x).

Для нелинейной индуктивности роль х играет мгновенное значение индукции роль у - мгновенное значение напряженности поля Н. Для нелинейного конденсатора у - это напряжение - заряд q. Для нелинейных резисторов (например, тиритовых сопротивлений) роль х играет напряжение, у - ток.

Существует большое число различных аналитических выражений, в той или иной мере пригодных для аналитического описания характеристик нелинейных элементов . При выборе наиболее подходящего аналитического выражения для функции у = f(x) исходят не только из того, что кривая, описываемая аналитическим выражением, должна достаточно близко всеми своими точками расположиться к опытным путем полученной кривой в предполагаемом диапазоне перемещений рабочей точки на ней, но учитывают и те возможности, которые выбранное аналитическое выражение дает при анализе свойств электрических цепей.

В дальнейшем для аналитического описания симметричных характеристик по типу рис. 15.11, а будем пользоваться гиперболическим синусом:

В этом выражении - числовые коэффициенты; а выражается в тех единицах, что - в единицах, обратных единицам так что произведение есть величина безразмерная. Для определения неизвестных коэффициентов следует на полученной опытным путем зависимости у = f(x) в предполагаемом рабочем диапазоне произвольно выбрать две наиболее характерные точки, через которые должна пройти аналитическая кривая, подставить координаты этих точек в уравнение (15.1) и затем решить систему из двух уравнений с двумя неизвестными.

Пусть координаты этих точек (рис. 15.11, а). Тогда

Отношение

Трансцендентное уравнение (15.2) служит для определения коэффициента . Следовательно,

Пример 147. Кривая намагничивания трансформаторной стали изображена на рис. 15.11, б. Найти коэффициенты а и .

Решение. Выбираем две точки на кривой:

По уравнению (15.2) имеем Задаемся произвольными значениями и производим подсчеты:

По результатам подсчетов строим кривую и по ней находим . Далее определяем

Пунктирная кривая на рис. 15.11, б построена по уравнению . § 15.14. Понятие о функциях Бесселя. При анализе нелинейных цепей широко используют функции Бесселя, которые являются решением уравнения Бесселя

Функции Бесселя выражают степенными рядами и для них составлены таблицы. Функцию Бесселя от аргумента обозначают , где - порядок функции Бесселя. Общее выражение для в виде степенного ряда можно записать так:

Таблица 15.1