Напряженное состояние в точке. Главные площадки и главные напряжения. Основы теории напряженного состояния Обратная задача в плоском напряженном состоянии

Напряженное и деформированное состояния упругого тела. Связь между напряжениями и деформациями

Понятие о напряжении тела в данной точке. Нормальные и касательные напряжения

Внутренние силовые факторы, возникающие при нагружении упругого тела, характеризуют состояние того или иного сечения тела, но не дают ответа на вопрос о том, какая именно точка поперечного сечения является наиболее нагруженной, или, как говорят, опасной точкой . Поэтому необходимо ввести в рассмотрение какую-то дополнительную величину, характеризующую состояние тела в данной точке.

Если тело, к которому приложены внешние силы, находится в равновесии, то в любом его сечении возникают внутренние силы сопротивления. Обозначим через внутреннее усилие, действующее на элементарную площадку , а нормаль к этой площадке через тогда величина

(3.1)

называется полным напряжением.

В общем случае полное напряжение не совпадает по направлению с нормалью к элементарной площадке, поэтому удобнее оперировать его составляющими вдоль координатных осей -

Если внешняя нормаль совпадает с какой-либо координатной осью, например, с осью Х , то составляющие напряжения примут вид при этом составляющая оказывается перпендикулярной сечению и называется нормальным напряжением , а составляющие будут лежать в плоскости сечения и называются касательными напряжениями .

Чтобы легко различать нормальные и касательные напряжения обычно применяют другие обозначения: - нормальное напряжение, - касательное.

Выделим из тела, находящегося под действием внешних сил, бесконечно малый параллелепипед, грани которого параллельны координатным плоскостям, а ребра имеют длину . На каждой грани такого элементарного параллелепипеда действуют по три составляющие напряжения, параллельные координатным осям. Всего на шести гранях получим 18 составляющих напряжений.

Нормальные напряжения обозначаются в виде , где индекс обозначает нормаль к соответствующей грани (т.е. может принимать значения ). Касательные напряжения имеют вид ; здесь первый индекс соответствует нормали к той площадке, на которой действует данное касательное напряжение, а второй указывает ось, параллельно которой это напряжение направлено (рис.3.1).

Рис.3.1. Нормальные и касательные напряжения

Для этих напряжений принято следующее правило знаков . Нормальное напряжение считается положительным при растяжении, или, что то же самое, когда оно совпадает с направлением внешней нормали к площадке, на которой действует. Касательное напряжение считается положительным, если на площадке, нормаль к которой совпадает с направлением параллельной ей координатной оси, оно направлено в сторону соответствующей этому напряжению положительной координатной оси.

Составляющие напряжений являются функциями трех координат. Например, нормальное напряжение в точке с координатами можно обозначать

В точке, которая отстоит от рассматриваемой на бесконечно малом расстоянии, напряжение с точностью до бесконечно малых первого порядка можно разложить в ряд Тейлора:

Для площадок, которые параллельны плоскости изменяется только координата х , а приращения Поэтому на грани параллелепипеда, совпадающей с плоскостью нормальное напряжение будет , а на параллельной грани, отстоящей на бесконечно малом расстоянии , - Напряжения на остальных параллельных гранях параллелепипеда связаны аналогичным образом. Следовательно, из 18 составляющих напряжения неизвестными являются только девять.

В теории упругости доказывается закон парности касательных напряжений , согласно которому по двум взаимно перпендикулярным площадкам составляющие касательных напряжений, перпендикулярные линии пересечения этих площадок, равны друг другу:

Можно показать, что напряжения (3.3) не просто характеризуют напряженное состояние тела в данной точке, но определяют его однозначно. Совокупность этих напряжений образует симметричную матрицу, которая называется тензором напряжений :

(3.4)

Так как в каждой точке будет свой тензор напряжений, то в теле имеется поле тензоров напряжений.

При умножении тензора на скалярную величину получится новый тензор, все компоненты которого в раз больше компонентов исходного тензора.

Напряжение – численная мера распределения внутренних сил по плоскости поперечного сечения. Его используют при исследовании и определении внутренних сил любой конструкции.

Выделим на плоскости сечения площадку DA ; по этой площадке будет действовать внутренняя сила DR. Величина отношения DR/DA=p ср называется средним напряжением на площадке DA . Истинное напряжение в точке А получим устремив DA к нулю

Нормальные напряжения возникают, когда частицы материала стремятся отдалиться друг от друга или, наоборот, сблизиться. Касательные напряжения связаны со сдвигом частиц по плоскости рассматриваемого сечения.

Очевидно, что . Касательное напряжение в свою очередь может быть разложено по направлениям осей x и y (τ zх, τ zу ). Размерность напряжений – Н/м 2 (Па).


17. Понятие о напряжениях. Нормальные и касательные напряжения.

Внутренние силовые факторы. Метод сечений. Эпюры. Выражение внутренних силовых факторов через нормальные и касательные напряжения.

Внутренние силовые факторы

В процессе деформации бруса, под нагрузкой происходит изменение взаимного расположения элементарных частиц тела, в результате чего в нем возникают внутренние силы.

По своей природе внутренние силы представляют собой взаимодействие частиц тела, обеспечивающее его целостность и совместность деформаций.

Чтобы численно установить величину внутренних сил пользуются методом сечений.

Метод сечений сводится к четырем действиям:

1. Разрезают (мысленно) тело плоскостью в том месте, где нужно определить внутренние силы (рис. 7);

Рис. 7

2. Отбрасывают любую отрезанную часть тела (желательно наиболее сложную), а ее действие на оставшуюся часть заменяют внутренними силами, чтобы оставшаяся исследуемая часть находилась в равновесии (рис.8);

Рис. 8

3. Приводят систему сил к одной точке (как правило, к центру тяжести сечения) и проецируют главный вектор и главный момент системы внутренних сил на нормаль к плоскости (ось ) и главные центральные оси сечения ( и ).

Полученные силы (N, Qy, Qz) (рис. 9) и моменты (Мк, Мy, Mz) называют внутренними силовыми факторами в сечении

Рис. 9

Для внутренних силовых факторов приняты следующие названия:

-продольная или осевая сила;

И -поперечные силы ;

-крутящий момент ;

И -изгибающие моменты .

4. Находят внутренние силовые факторы, составляя шесть уравнений равновесия статики для рассматриваемой части рассеченного тела.

Эпю́ра (фр. epure - чертёж) - особый вид графика, показывающий распределение величины нагрузки на объект. Например, для стержня продольная ось симметрии берётся за область определения и составляются эпюры для сил, напряжений и разных деформаций в зависимости от абсциссы.



Расчёт эпюр напряжения является базовой задачей такой дисциплины, как сопротивление материалов. В частности, только при помощи эпюры возможно определить максимально допустимую нагрузку на материал.

Для построения ординаты эпюры M в каком либо сечении стержня

необходимо выполнить следующие две операции.

1. С помощью уравнения равновесия ∑M(слева)= 0 для левой отсеченной

части стержневой системы (или ∑M(справа) = 0 для правой части) подсчитать

численное значение изгибающего момента в сечении.

2. Отложить найденное численное значение в виде ординаты перпендикулярно оси стержня со стороны растянутого волокна стержня .

Численное значение изгибающего момента в сечении равно численному значению алгебраической суммы моментов всех сил, действующих на стержневую системус любой одной из сторон сечения , взятых относительно точки на оси сечения.

Составляющую, лежащую в сечении в данной площадке обознача­ется через и называется касательным напряжением .

Нормальное напряжение, направленное от сечения, считают положительным, направленное к сечению – отрицательным.

Нормальные напряжения возникают, когда под действием внешних сил частицы, расположенные по обе стороны от сечения, стремятся удалиться одна от другой или сблизиться. Касательные напряжения возникают, когда частицы стремятся сдвинуться одна относительно другой в плоскости сечения.

Касательное напряжение можно разложить по координатным осям на две составляющие и (рис. в) Первый индекс при показывает, какая ось перпендикулярна сечению, второй – параллельно какой оси действует напряжение. Если в расчетах направление касательного напряжения не имеет значения, его обозначают без индексов.



Напряжение – численная мера распределения внутренних сил по плоскости поперечного сечения. Его используют при исследовании и определении внутренних сил любой конструкции.

Выделим на плоскости сечения площадку A ; по этой площадке будет действовать внутренняя сила R .

Величина отношения R / A = p ср называется средним напряжением на площадке A . Истинное напряжение в точке А получим устремив A к нулю:

Нормальные напряжения возникают, когда частицы материала стремятся отдалиться друг от друга или, наоборот, сблизиться. Касательные напряжения связаны со сдвигом частиц по плоскости рассматриваемого сечения.

Очевидно, что
. Касательное напряжение в свою очередь может быть разложено по направлениям осейx и y (τ z х , τ z у ). Размерность напряжений – Н/м 2 (Па).

При действии внешних сил наряду с возникновением напряжений происходит изменение объема тела и его формы, т. е. тело деформируется. При этом различают начальное (недеформированное) и конечное (деформированное) состояния тела.

16.Закон парности касательных напряжений

Касат. напряжение на 2-ух взаимно перпендик. площ. направлены к ребру или от ребра и равны по величине

17.Понятие о деформациях. Мера линейной, поперечной и угловой деформации

Деформац – наз. взаимное перемещение точек или сечений тела по сравн с полож-ями тела которые они занимали до приложения внеш сил

бывают: упругие и пластические

а) линейная деформация

мерой явл относительное удлинение эпсила =l1-l/l

б) поперечная деф

мерой явл. относительное сужение эпсила штрих=|b1-b|/b

18.Гипотеза плоских сечений

Основные гипотезы (допущения): гипотеза о не надавливании продольных волокон: волокна, параллельные оси балки, испытывают деформацию растяжения – сжатия и не оказывают давления друг на друга в поперечном направлении; гипотеза плоских сечений : сечение балки, плоское до деформации, остается плоским и нормальным к искривленной оси балки после деформации. При плоском изгибе в общем случае возникают внутренние силовые факторы : продольная сила N, поперечная сила Q и изгибающий момент М. N>0, если продольная сила растягивающая; при М>0 волокна сверху балки сжимаются, снизу растягиваются. .

Слой, в котором отсутствуют удлинения, называется нейтральным слоем (осью, линией). При N=0 и Q=0, имеем случай чистого изгиба. Нормальные напряжения:
, - радиус кривизны нейтрального слоя, y - расстояние от некоторого волокна до нейтрального слоя.

19.Закон Гука (1670). Физический смысл входящих в него величин

Он установил связь между напряжением, растяжением и продольной деформацией.
где Е – коэффициент пропорциональности (модуль упругости материала).

Модуль упругости характеризует жёсткость материала, т.е. способность сопротивляться деформациям. (чем больше Е, тем менее растяжимый материал)

Потенциальная энергия деформации:

Внешние силы, приложенные к упругому телу, совершают работу. Обозначим её через А. В результате этой работы накапливается потенциальная энергия деформированного тела U. Кроме того, работа идёт на сообщение скорости массе тела, т.е. преобразуется в кинетическую энергию К. Баланс энергии имеет вид А = U + К.

Подставим выражения закона Гука в уравнение совместности деформаций:

Решая данное уравнение совместно с уравнениями равновесия, найдем неизвестные внутренние усилия в стержнях.

ОСНОВЫ ТЕОРИИ НАПРЯЖЕННОГО СОСТОЯНИЯ

Напряжения в точке. Главные напряжения и главные площадки.

Напряжения являются результатом взаимодействия частиц тела при его нагружении. Внешние сипы стремятся изменить взаимное расположение частиц, а возникающие при этом напряжения препятствуют их смещению. Расположенная в данной точке частица по-разному взаимодействует с каждой из соседних частиц. Поэтому в общем случае в одной и той же точке напряжения различны по различным направлениям.

В сложных случаях действия сил на брус (в отличие от растяжения или сжатия) вопрос об определении наибольших напряжений, а также положения площадок, на которых они дей­ствуют, усложняется. Для решения этого вопроса приходится специально исследовать за­коны изменения напряжений при изменении положения площадок, проходящих через данную точку. Возникает проблема исследования напряженного состояния в точке деформируемого тела.

Напряженное состояние в точке - совокупность напряжений (нормальных и касательных), действующих по всевозможным площадкам (сечениям), проведенным через эту точку.

Изучение напряженного состояния дает возможность анализировать прочность материала для любого случая нагружения тела.

Исследуя напряженное состояние в данной точке деформируемого тела, в ее окрестно­сти выделяют бесконечно малый (элемен­тарный) параллелепипед, ребра которого направлены вдоль соответствующих координатных осей. При действии на тело внешних сил на каждой из граней элемен­тарного параллелепипеда возникают на­пряжения, которые представляют нормаль­ными и касательными напряжениями проекциями полных напряжений на коор­динатные оси (рис. 5.1).

Нормальные напряжения обозначают буквой σ с индексом, соответствующим нормали к площадке, на которой они действуют. Касательные напряже­ния обозначают буквой τ с двумя индексами: первый соответствует нормали к площадке, а второй - направлению самого напряжения (или наоборот).

Таким образом, на гранях элементарного параллелепипеда, выделенного в окрестности точки нагруженного тела, действует девять компонентов напря­жения. Их можно записать в виде следующей квадратной матрицы:

σ х τ ху τ х z

Т σ = τ у x σ у τ у z

τ zx τ z у σ z

Эта совокупность напряжений называется тензором напряжений .

Тензор напряжений полностью описывает напряженное состояние в точке, то есть если известен тензор напряжений в данной точке, то можно найти напряжения на любой из площадок, проходящих через данную точку (заметим, что тензор представляет собой особый математический объект, компоненты которого при повороте координатных осей подчиняются специфическим правилам тензорного преобразования, при этом тензорное исчисление составляет отдельный раздел высшей математики и здесь не рассматривается).

Используем принятое правило знаков для напряжений в общем виде. Нормальное напряжение σ считается положительным, если совпадает по направлению с внешней нормалью к площадке, касательные напряжения τ считаются положительными, если вектор касательных напряжений следует поворачивать против хода часовой стрелки до совпадения с внешней нормалью (рис. 5.2). Отрицательными считаются напряжения обратных направлений.

Не все девять компонентов напряжений, действующих на гранях параллеле­пипеда, независимые (несвязанные друг с другом). В этом легко убедится, составив уравнения равновесия элемента в отношении его вращений относи­тельно координатных осей. Записав уравнения моментов от сил, действую­щих по граням параллелепипеда, и пренебрегая их изменением при переходе от одной грани к другой ей параллельной, получим, что

τ ху = τ ух, τ х z = τ z х, τ yz = τ zy (5.1)

Данные равенства называют законом парности касательных на­пряжений.

Закон парности касательных напряжений: по двум взаимно перпендикуляр­ным площадкам касательные напряжения, перпендикулярные линии пересе­чения этих площадок, равны между собой.

Закон парности касательных напряжений устанавливает зависимость между величинами и направлениями пар касательных напряжений, действующих по взаимно перпендикулярным площадкам элементарного параллелепипеда.

В окрестности исследуемой точки можно выделить бесконечное множество взаимно перпендикулярных площадок. В том числе можно найти и такие площадки, на которых действуют только нормальные напряжения, а каса­тельные напряжения равны нулю. Такие площадки называют главными (более точно – площадки главных напряжений ).

Рассмотрим две взаимно перпендикулярные площадки с касательными напряжениями τ ху и τ ух. Согласно закону парности касательных напряжений эти напряжения равны. Поэтому, если площадку с напряжением τ ху поворачивать до совпадения с площадкой с напряжением τ ух, то обязательно найдется такое положение площадки, когда касательное напряжение τ = 0.

Главные площадки - три взаимно перпендикулярные площадки в окрестно­сти исследуемой точки, на которых касательные напряжения равны нулю.

Главные напряжения - нормальные напряжения, действующие по главным площадкам (то есть площадкам, на которых отсутствуют касательные напряжения).

Главные напряжения обозначаются σ 1 , σ 2 , σ 3 , причем σ 1 ≥ σ 2 ≥ σ 3 .

На главных площадках нормальные напряжения (главные напряжения) принимают свои экстремальные значения – максимум σ 1 , минимум σ 3 .

Тензор напряжений, записанный через главные напряжения, принимает наиболее простой вид:

Т σ = 0 σ 2 0

В зависимости от того, сколько главных напряжений действует в окрестности данной точки, различают три вида напряженного состояния:

1) линейное (одноосное) - если одно главное напряжение отлично от нуля, а два других равны нулю (σ 1 ≠0, σ 2 = 0, σ 3 = 0);

2) плоское (двухосное) - если два главных напряжения отличны от нуля, а одно равно нулю (σ 1 ≠0, σ 2 ≠ 0, σ 3 = 0);

3) объемное (трехосное) - если все три главных напряжения отличны от нуля (σ 1 ≠0, σ 2 ≠ 0, σ 3 ≠ 0).

Линейное напряженное состояние

Линейным или одноосным называется напряженное состояние, при котором два из трех главных напряжений равны нулю (рис. 5.3, а).

Элементы, находящиеся в линейном напряженном состоянии, можно выделить в окрест­ности некоторых точек стержня, работающего на изгиб, иногда - при сложном нагружении, но главным образом на растяжение или сжатие.

Рассмотрим стержень, испытывающий простое растяжение (рис.5.4). Нормальные напряжения в его по­перечных сечениях определяются следующим образом:

Касательные напряжения здесь равны нулю. Следовательно, эти сечения являются главными площадками (σ 1 = σ 0).

Перейдем теперь к определению напряжений на неглавных, наклонных площадках. Выделим площадку, нормаль к которой составляет с осью стержня угол α (рис. 5.5). Проведенную таким образом наклонную площадку будем обозначать α -площадкой, а действующие на ней полные, нор­мальные и касательные напряжения - р α , σ α, τ α соответственно. При этом площадь α -площадки (А α)связана с площадью поперечного сечения стержня (А 0 )следующим образом: А α = А 0 /cos α .

Для определения напряжений воспользуемся методом мысленных сечений. Считая, что наклонная площадка рассекла стержень на две части, отбросим одну из них (верхнюю) и рассмотрим равновесие оставшейся (нижней). Осевая сила (N ) в сечении представляет собой равнодействующую полных на­пряжений р α . Следовательно,

N = р α · А α .

р α = = cos α = σ 0 cos α.

Нормальные и касательные напряжения определим, проецируя полное на­пряжение на нормаль и плоскость α -площадки соответственно:

σ α = р α · cos α;

τ α = р α · sin α,

или, учитывая, что р 0 = σ 0 cos α;

σ α = σ 0 cos 2 α;

τ α = 0,5σ 0 sin 2α .

Из анализа формул видно, что:

1) На площадках, перпендикулярных оси, касательные напряжения равны нулю (такие площадки называются главными , а действующие на них нормальные напряжения – главными нормальными напряжениями ), т.е. при α = 0 в поперечных сечениях стержня τ α = 0, σ α = σ 0 (σ 1 = σ 0 , σ 2 = 0, σ 3 = 0);

2) На площадках, параллельных оси, никаких напряжений нет, поэтому это также главная площадка, т.е. при α = π / 2 в поперечных сечениях стержня τ α = 0, σ α = 0;

3) Наибольшие нормальные напряжения действуют в поперечных сечениях, а наибольшие касательные – на площадках, наклоненных к ним под углом 45°, т.е. при α = ± π / 4 в поперечных сечениях стержня возникают максимальные касательные напряжения τ α = τ max = σ 0 / 2 (нормальные напряжения σ α = σ 0 / 2).

Напряжения на наклонных площадках при плоском напряженном состоянии

Плоским или двухосным называется напряженное состояние, при котором одно из трех главных напряжений равно нулю (рис. 5.3, б).

Плоское (двухосное) напряженное состояние встречается при кручении, изгибе и сложном сопротивлении и является одним из наиболее распространенных видов напряженного со­стояния.

Определим напряжения на наклонных пло­щадках при плоском напряженном состоя­нии. Рассмотрим элементарный параллеле­пипед, грани которого являются главными площадками (рис. 5.6). По ним действуют положи­тельные напряжения σ 1 и σ 2 , а третье глав­ное напряжение σ 3 = 0.

Проведем сечение, нормаль к которому по­вернута на угол α от большего из двух глав­ных напряжений (σ 1) против часовой стрел­ки (положительное направление α ). Напря­жения σ α и τ α на этой площадке будут вызываться как действием σ 1 . так и действием σ 2 .

Запишем правила знаков . Будем считать положительными следующие направления напряжений и углов: нормальные напряжения σ - растягивающие: касательные напряжения τ - вращающие элемент по часовой стрелке: угол α - против часовой стрелки от наибольшего из главных напряжений (α < 45°).

Плоское напряженное состояние может быть представле­но как наложение (суперпозиция) двух взаимноперпендикулярных (ортогональных) одноосных напряженных состояний (рис. 5.7). При этом:

σ α = σ α ΄ + σ α ΄΄,

τ α = τ α ΄ + τ α ΄΄,

где σ α ΄, τ α ΄-напряжения, вызванные действием σ 1 ;

σ α ΄΄, τ α ΄΄ - напряжения, вызванные действием σ 2 .

Напряжения при одноосном напряженном состоянии (от действия Ci) связаны между собой как

σ α ΄ = σ 1 cos 2 α;

τ α ΄ = 0,5 σ 1 sin 2α .

Напряжения σ α ΄΄, τ α ΄΄, вызванные действием σ 2 , можно найти аналогично, но при этом необходимо учесть, что вместо угла α в формулы необходимо под­ставить угол β = - (90°- α ) - угол между α -площадкой и напряжением σ 2 .Отсюда получим

σ α ΄΄ = σ 2 ∙ cos 2 [- (90°- α )] → σ α ΄΄ = σ 2 sin 2 α ;

τ α ΄΄ = 0,5 σ 2 sin 2[- (90°- α )] → τ α ΄΄ = - 0,5 σ 2 sin2 α ;

Окончательно можем записать

σ α = σ 1 cos 2 α + σ 2 sin 2 α = + cos2α ; (5.2)

τ α = 0,5 σ 1 sin 2α - 0,5 σ 2 sin2 α = sin2α . (5.3)

Пример 4.1. Определить нормальное и касательное напряжения в точке К прямоугольного сечения балки (6х14 см), если изгибающий момент в этом сечении М х =–40кНм=–40 кНсм., а поперечная сила равна 20 кН.

Решение. Момент инерции прямоугольного поперечного сечения относительноглавной центральной оси x .

J x = = =1372 см 4 . .

Ось у направим вниз. Координата точки К равна у к = –4см.

Нормальное напряжение в точке К будет равно

=116,6 МПа.

Касательное напряжение в точке К вычисляем по формуле Журавского.

Статический момент отсечённой части площади сечения равен

Ширина сечения на уровне К равна b(y)= 6см.

Определим касательное напряжение в точке К.

=2,4 МПа.

Пример 4.2. Определить наибольшее растягивающее нормальное и наибольшее касательное напряжения в балке круглого сечения, если в сечении М х = 80 кНм= 80 10 3 кНсм, Q= 60кН.

Диаметр сечения d=14 см.


Решение. Наибольшее растягивающее нормальное напряжение возникает в нижнем волокне растянутой зоны сечения, т.е. в волокне наиболее удалённом от нейтральной оси х , и определяется по формуле

Наибольшие касательные напряжения возникают в точках сечения на уровне нейтральной оси х , где все касательные напряжения параллельны поперечной силе, и их можно определять по формуле Журавского.

Площадь сечения равна А = = =153,56 см 2 .

Момент сопротивления сечения равен W x = = 269,26см 3 .

Определим значение растягивающего наибольшего нормального

напряжения

=14,86 =148,6 МПа.

Определим значение наибольшего касательного напряжения

=0,52 =5,2МПа.

Пример 4.3. Определить нормальное и касательное напряжения в точке К на уровне примыкания стенки к полкам стального двутавра (I30), а также наибольшие нормальные и касательные напряжения, если М х =50 кНм=50 10 2 кНсм, Q =30 кН.

Решение. Из сортамента балки двутавровые выписываем необходимые данные для двутавра I30.

h = 300мм=30 см, b=135мм=13,5см, d = 6,5 см=0,65 см,

t=10,2 мм=1,02 см.

Площадь сечения А= 46,5 см 2 , момент инерции J х = 7080 см 4 , момент сопротивления W х = 472 см 3 .

Определим значение статического момента площади сечения полки относительно нейтральной оси х .

= 199,53 см 3 .

На уровне примыкания стенки к полкам касательные напряжения