Миноры и алгебраические дополнения. Миноры и алгебраические дополнения определителей Миноры и алгебраические дополнения калькулятор онлайн

Минором любого элемента определителя называется, определитель второго

порядка, полученный вычеркиванием из данного определителя строки и столбца, содержащих этот элемент. Так минор для элемента

для элемента :

Алгебраическим дополнением любого элемента определителя называют минор этого элемента взятый с множителем , где i – номер строки элемента, j – номер столбца. Таким образом, алгебраическое дополнение элемента :

Пример. Найти алгебраические дополнения для элементов определителя.

Теорема . Определитель равен сумме произведений элементов любого его столбца или строки на их алгебраические дополнения.

Другими словами, имеют место следующие равенства для определителя .

Доказательство этих равенств состоит из замены алгебраических дополнений их выражениями через элементы определителя, при этом получим выражение (3). Предлагается это выполнить самостоятельно. Замена определителя по одной из шести формул называется разложением определителя по элементам соответствующего столбца или строки. Эти разложения применяют для вычисления определителей.

Пример. Вычислить определитель, разложив его по элементам второго столбца.

Используя теорему о разложении определителя третьего порядка по элементам строки или столбца, можно доказать справедливость свойств 1-8 для определителей третьего порядка. Предполагается проверить справедливость этого утверждения. Свойства определителей и теорема о разложении определителя по элементам столбца или строки позволяют упростить вычисления определителей.

Пример . Вычислить определитель.

Вычислим общий множитель «2» элементов второй строки, а затем такой же общий множитель элементов третьего столбца.

Прибавим элементы первой строки к соответствующим элементам второй строки, затем третьей строки.

Разложим определитель по элементам первого столбца.

Без преобразования матрицы, определитель легко посчитать только для матриц размером 2×2 и 3×3. Это делается по формулам:

Для матрицы

определитель равен:

Для матрицы

определитель равен:

a11*(a22*a33-a23*a32)-a12*(a21*a33-a23*a31)+a13*(a21*a32-a22*a31)

Расчёты для матриц размером 4×4 и выше затруднительны, поэтому их нужно преобразовывать в соответствии со свойствами определителя. Нужно стремиться получить матрицу, в которой все значения кроме одного любого столбца или любой строки равны нулю. Пример такой матрицы:

Для неё определитель равен:

A12*(a21*(a33*a44-a34*a43)-a23*(a31*a44-a34*a41)+a24*(a31*a43-a33*a41))

Обратите внимание, что

a21*(a33*a44-a34*a43)-a23*(a31*a44-a34*a41)+a24*(a31*a43-a33*a41)

это вычисление детерминанта матрицы, полученой вычетом строки и столбца, на пересечении которых находиться единственное не нулевое числов строки/столбца, по которому мы разлагаем матрицу:

И полученное значение мы умножаем на то самое число, из "нулевого" столбца / строки, при этом число может быть умножено на -1 (все подробности ниже).

Если привести матрицу к треугольному виду, то её определитель вычисляется как произведение цифр по диагонали. Например, для матрицы

Определитель равен:

Аналогично следует поступать с матрицами 5×5, 6×6 и другими больших размерностей.

Преобразования матриц нужно выполнять в соответствии со свойствами определителя. Но прежде чем перейти к практике по вычислению определителя для матриц 4×4, давайте вернёмся к матрицам 3×3 и подробно рассмотрим, как вычисляется определитель для них.

Минор

Определитель матрицы не очень прост для понимания, поскольку в его понятии присутствует рекурсия: определитель матрицы состоит из нескольких элементов, в том числе из определителя (других) матриц.

Чтобы не застрять на этом, давайте прямо сейчас (временно) примем, что определитель матрицы

вычисляется так:

Ещё разберёмся в условных обозначения и в таких понятиях как минор и алгебраическое дополнение .

Буквой i мы обозначаем порядковый номер стоки, буквой j - порядковый номер столбца.

a ij означает элемент матрицы (цифру) на пересечении строки i и столбца j.

Представим себе матрицу, которая получена из исходной удалением строки i и столбца j. Определитель новой матрицы, которая получена из исходной удалением строки i и столбца j, называется минором M ij элемента a ij .

Проиллюстрируем сказанное. Предположим, дана матрица

Тогда для определения минора M 11 элемента a 11 нам нужно составить новую матрицу, которая получается из исходной удалением первой строки и первого столбца:

И вычислить для неё определитель: 2*1 – (-4)*0 = 2

Для определения минора M 22 элемента a 22 нам нужно составить новую матрицу, которая получается из исходной удалением второй строки и второго столбца:

И вычислить для неё определитель: 1*1 -3*3 = -8

Алгебраическое дополнение

Алгебраическим дополнением А ij для элемента a ij называется минор M ij этого элемента, взятый со знаком «+», если сумма индексов строки и столбца (i + j), на пересечении которых стоит этот элемент, чётная, и со знаком «-», если сумма индексов нечётная.

Таким образом,

Для матрицы из предыдущего примера

А 11 = (-1) (1+1) * (2*1 – (-4)*0) = 2

А 22 = (-1) (2+2) * (1*1 -3*3) = -8

Вычисление определителя для матриц

Определителем порядка n, соответствующим матрице А, называется число, обозначаемое det A и вычисляемое по формуле:

В этой формуле нам всё уже знакомо, давайте теперь посчитаем определитель матрицы для

Каков бы ни был номер строки i=1,2,…, n или столбца j = 1, 2,…, n определитель n-го порядка равен сумме произведений элементов этой строки или этого столбца на их алгебраические дополнения, т. е.

Т.е. детерминант можно вычислить по любому столбцу или по любой строке.

Чтобы убедиться в этом, вычислим определитель для матрицы из последнего примера по второму столбцу

Как видим, результат идентичный и для этой матрицы определитель всегда будет -52 не зависимо от того, по какой строке или по какому столбцу мы его будем считать.

Свойства определителя матриц

  1. Строки и столбцы определителя равноправны, т. е. величина определителя не изменится, если поменять местами его строки и столбцы с сохранением порядка их следования. Эта операция называется транспонированием определителя. В соответствии со сформулированным свойством det A = det AT.
  2. При перестановке местами двух строк (или двух столбцов) определитель сохраняет свою абсолютную величину, но меняет знак на противоположный.
  3. Определитель с двумя одинаковыми строками (или столбцами) равен нулю.
  4. Умножение всех элементов некоторой строки (или некоторого столбца) определителя на число λ равносильно умножению определителя на число λ.
  5. Если все элементы какой-либо строки (или какого-либо столбца) определителя равны нулю, то и сам определитель равен нулю.
  6. Если элементы двух строк (или двух столбцов) определителя пропорциональны, то определитель равен нулю.
  7. Если к элементам некоторой строки (или некоторого столбца) определителя прибавить соответствующие элементы другой строки (другого столбца), умноженные на произвольный множитель λ, то величина определителя не изменится.
  8. Сумма произведений элементов какой-либо строки (какого-либо столбца) определителя на соответствующие алгебраические дополнения элементов любой другой строки (любого другого столбца) равна нулю.
  9. Если все элементы i-й строки определителя представлены в виде суммы двух слагаемых a ij = b j + c j то определитель равен сумме двух определителей, у которых все строки, кроме i-й, такие же, как и в заданном определителе, i-я строка в одном из слагаемых состоит из элементов b j , а в другом — из элементов c j . Аналогичное свойство справедливо и для столбцов определителя.
  10. Определитель произведения двух квадратных матриц равен произведению их определителей: det (А * В) = det A * det B.

Для вычисления определителя любого порядка можно применять метод последовательного понижения порядка определителя. Для этого пользуются правилом разложения определителя по элементам строки или столбца. Еще один способ вычисления определителей заключается в том, чтобы с помощью элементарных преобразований со строками (или столбцами), прежде всего в соответствии со свойствами 4 и 7 определителей, привести определитель к виду, когда под главной диагональю определителя (определяемой так же, как и для квадратных матриц) все элементы равны нулю. Тогда определитель равен произведению элементов, расположенных на главной диагонали.

При вычислении определителя последовательным понижением порядка для уменьшения объема вычислительной работы целесообразно с помощью свойства 7 определителей добиться обнуления части элементов какой-либо строки или какого-либо столбца определителя, что уменьшит число вычисляемых алгебраических дополнений.

Приведение матрицы к треугольному виду, преобразование матрицы, облегчающее вычисление определителя

Показанные ниже методы нецелесообразно использовать для матриц 3×3, но я предлагаю рассмотреть суть методов на простом примере. Воспользуемся матрицей, для которой мы уже считали определитель — нам будет проще проверить правильность вычислений:

Используя 7-е свойство определителя, вычтем из второй строки третью, умноженную на 2:

из третьей строки вычтем соответствующие элементы первой строки определителя, умноженные на 3:

Так как элементы определителя, расположенные под его главной диагональю, равны 0, то, следовательно, определитесь равен произведению элементов, расположенных на главной диагонали:

1*2*(-26) = -52.

Как видим, ответ совпал с полученными ранее.

Давайте вспомним формулу определителя матрицы:

Детерминант — это сумма алгебраических дополнений, умноженная на члены одной из строк или одного из столбцов.

Если в результате преобразований мы сделаем так, что одна из строк (или столбец) будет состоять полностью из нулей кроме одной позиции, то нам не нужно будет считать все алгебраические дополнения, поскольку они заведомо будут равны нулю. Как и предыдущий метод, этот целесообразно применять для матриц больших размеров.

Покажем пример на той же самой матрице:

Замечаем, что второй столбец определителя уже содержит один нулевой элемент. Прибавляем к элементам второй строки элементы первой строки, умноженные на -1. Получим:

Вычислим определитель по второму столбцу. Нам нужно посчитать только одно алгебраическое дополнение, поскольку остальные заведомо сводятся к нулю:

Вычисление определителя для матриц 4×4, 5×5 и больших размерностей

Чтобы избежать слишком больших вычислений для матриц больших размеров следует делать преобразования, описанные выше. Приведём пару примеров.

Вычислить определитесь матрицы

Р е ш е н и е. Используя 7-е свойство определителя, вычтем из второй строки третью, из четвёртой строки — соответствующие элементы первой строки определителя, умноженные соответственно на 3, 4, 5. Эти действия сокращённо будем обозначать так: (2) — (1) * 3; (3) — (1) * 4; (4) — (1) * 5. Получим:

Выполним действия

определителя по элементам строки или столбца

Дальнейшие свойства связаны с понятиями минора и алгебраического дополнения

Определение. Минором элемента называется определитель, составленный из элементов, оставшихся после вычеркивания i -ой стоки и j -го столбца, на пересечении которых находится этот элемент. Минор элемента определителяn -го порядка имеет порядок (n - 1). Будем его обозначать через .

Пример 1. Пусть , тогда.

Этот минор получается из A путём вычёркивания второй строки и третьего столбца.

Определение. Алгебраическим дополнением элемента называется соответствующий минор, умноженный нат.е, где i –номер строки и j -столбца, на пересечении которых находится данный элемент.

V ІІІ. (Разложение определителя по элементам некоторой строки). Определитель равен сумме произведений элементов некоторой строки на соответствующие им алгебраические дополнения.

.

Пример 2. Пусть , тогда

.

Пример 3. Найдём определитель матрицы , разложив его по элементам первой строки.

Формально эта теорема и другие свойства определителей применимы пока только для определителей матриц не выше третьего порядка, поскольку другие определители мы не рассматривали. Следующее определение позволит распространить эти свойства на определители любого порядка.

Определение. Определителем матрицы A n-го порядка называется число, вычисленное с помощью последовательного применения теоремы о разложении и других свойств определителей .

Можно проверить, что результат вычислений не зависит от того, в какой последовательности и для каких строк и столбцов применяются вышеуказанные свойства. Определитель с помощью этого определения находится однозначно.

Хотя данное определение и не содержит явной формулы для нахождения определителя, оно позволяет находить его путём сведения к определителям матриц меньшего порядка. Такие определения называют рекуррентными.

Пример 4. Вычислить определитель: .

Хотя теорему о разложении можно применять к любой строке или столбцу данной матрицы, меньше вычислений получится при разложении по столбцу, содержащему как можно больше нулей.

Поскольку у матрицы нет нулевых элементов, то получим их с помощью свойства 7). Умножим первую строку последовательно на числа (–5), (–3) и (–2) и прибавим её ко 2-ой, 3-ей и 4-ой строкам и получим:

Разложим получившийся определитель по первому столбцу и получим:

(вынесем из 1-ой строки (–4), из 2-ой - (–2), из 3-ей - (–1) согласно свойству 4)

(так как определитель содержит два пропорциональных столбца).

§ 1.3. Некоторые виды матриц и их определители

Определение. Квадратная матрица, у которой ниже или выше главной диагонали стоят нулевые элементы (=0 при i j , или =0 при i j ) называется треугольной .

Их схематичное строение соответственно имеет вид: или.

Здесь 0 – означает нулевые элементы, а – произвольные элементы.

Теорема . Определитель квадратной треугольной матрицы равен произведению её элементов, стоящих на главной диагонали, т.е.

.

Например:

.

Определение. Квадратная матрица, у которой вне главной диагонали стоят нулевые элементы, называется диагональной .

Её схематический вид:

Диагональная матрица, у которой на главной диагонали стоят только единичные элементы называется единичной матрицей. Она обозначается через:

Определитель единичной матрицы равен 1, т.е. E=1.


Миноры матрицы

Пусть дана квадратная матрица А, n — ого порядка. Минором некоторого элемента аij , определителя матрицы n — ого порядка называется определитель (n — 1) — ого порядка, полученный из исходного путем вычеркивания строки и столбца, на пересечении которых находится выбранный элемент аij. Обозначается Мij.

Рассмотрим на примере определителя матрицы 3 — его порядка:
Миноры и алгебраические дополнения, определитель матрицы 3 — его порядка , тогда согласно определению минора, минором М12, соответствующим элементу а12, будет определитель : При этом, с помощью миноров можно облегчать задачу вычисления определителя матрицы . Надо разложить определитель матрицы по некоторой строке и тогда определитель будет равен сумме всех элементов этой строки на их миноры. Разложение определителя матрицы 3 — его порядка будет выглядеть так:


, знак перед произведением равен (-1) n , где n = i + j.

Алгебраические дополнения:

Алгебраическим дополнением элемента аij называется его минор , взятый со знаком «+», если сумма (i + j) четное число, и со знаком «-«, если эта сумма нечетное число. Обозначается Аij.
Аij = (-1)i+j × Мij.

Тогда можно переформулировать изложенное выше свойство. Определитель матрицы равен сумме произведение элементов некоторого ряда (строки или столбца) матрицы на соответствующие им алгебраические дополнения . Пример.

Задача 1.

Для данного определителя

найти миноры и алгебраические дополнения элементов α 12 , α 32 . Вычислить определитель: а) разложив его по элементам первой строки и второго столбца; б) получив предварительно нули в первой строке.

Находим:

М 12 =
= –8–16+6+12+4–16 = –18,

М 32 =
= –12+12–12–8 = –20.

Алгебраические дополнения элементов а 12 и а 32 соответственно равны:

А 12 = (–1) 1+2 М 12 = –(–18) = 18,

А 32 = (–1) 3+2 М 32 = –(–20) = 20.

а) Вычислим определитель, разложив его по элементам первой строки:

A 11 А 11 + a 12 А 12 + a 13 А 13 + a 14 А 14 = –3
–2 +

1
= – 3(8 + 2 + 4 – 4) – 2(– 8 – 16 + 6 + 12 + 4 – 16) + (16 – 12 – – 4 + 32) = 38;

Разложим определитель по элементам второго столбца:

= – 2 – 2
+ 1
= – 2(– 8 + 6 – 16 + + 12 + 4 – 16) – 2(12 + 6 – 6 – 16) + (– 6 + 16 – 12 – 4) = 38;

б) Вычислим , получив предварительно нули в первой строке. Используем соответствующее свойство определителей. Умножим третий столбец определителя на 3 и прибавим к первому, затем умножим на –2 и прибавим ко второму. Тогда в первой строке все элементы, кроме одного, будут нулями. Разложим полученный таким образом определитель по элементам первой строки и вычислим его:

= =
=
=
=

= – (– 56 + 18) = 38.

(В определителе третьего порядка получили нули в первом столбце по тому же самому, что и выше свойству определителей.) ◄

Задача 2.

Дана система линейных неоднородных алгебраических уравнений

Проверить, совместна ли эта система, и в случае совместности решить ее: а) по формулам Крамера; б) с помощью обратной матрицы (матричным методом); в) методом Гаусса.

Совместность данной системы проверим по теореме Кронекера – Капелли. С помощью элементарных преобразований найдем ранг матрицы

А =

данной системы и ранг расширенной матрицы

В =

.

Для этого умножим первую строку матрицы В на –2 и сложим со второй, затем умножим первую строку на –3 и сложим с третьей, поменяем местами второй и третий столбцы. Получим

В =

~

~
.

Следовательно, rang А = rang В = 3 (т. е. числу неизвестных). Значит, исходная система совместна и имеет единственное решение.

а) По формулам Крамера

x = x / , y = y / , z = z/ ,

=
= – 16;

x =
= 64;

y =
= – 16;

z =
= 32,

находим: x = 64/(– 16) = – 4, y = – 16/(– 16) = 1, z = 32/(– 16)= – 2;

б) Для нахождения решения системы с помощью обратной матрицы запишем систему уравнений в матричной форме АХ = . Решение системы в матричной форме имеет вид х = А –1 . По формуле находим обратную матрицу А –1 (она существует, так как = dеt A = – 16 ≠ 0):

A 11 =
= – 15, A 21 = –
= 16, A 31 =
= – 11,

A 12 = –
= – 3, A 22 =
= 0, A 32 = –
= 1,

A 13 =
= – 14, A 23 = –
= 16, A 33 =
= – 6,

A –1 =

.

Решение системы:

X = =
=
=

.

Итак, x = –4, y = 1, z = –2;

в) Решим систему методом Гаусса. Исключим x из второго и третьего уравнений. Для этого первое уравнение умножим на 2 и вычтем из второго, затем первое уравнение умножим на 3 и вычтем из третьего:

Из полученной системы находим x = – 4, y = 1, z = –2. ◄

Задача 5.

Вершины пирамиды находятся в точках А(2; 3; 4), В(4; 7; 3), С(1; 2; 2) и D(– 2; 0; – 1). Вычислить: а) площадь грани ABC ; б) площадь сечения, проходящего через середину ребер АВ , AC , AD ; в) объем пирамиды ABCD .

А) Известно, что S ABC =
. Находим:
= (2; 4; – 1) ,

= (– 1; – 1; – 2) ,

=
= – 9 i + 5 j + 2 k .

Окончательно имеем:

S ABC =
=
;

б) Середины ребер АВ , ВС и А D находятся в точках К (3; 5; 3,5),

М (1,5; 2,5; 3), N (0; 1,5; 1,5) . Далее имеем:

S сеч =
,

= (– 1,5; – 2,5; – 0,5),
= (– 3; – 3,5; – 2),

=
= 3,25i – 1,5j – 2,25k ,

S сеч =
=
;

в) Поскольку V пир =
,
= (– 4; – 3; – 5),

=
= 11, то V = 11/6 . ◄

Задача 6

Сила F = (2; 3;– 5) приложена к точке А(1; – 2; 2) . Вычислить: а) работу силы F в случае, когда точка ее приложения, двигаясь прямолинейно, перемещается из положения А в положение В(1; 4; 0) ; б) модуль момента силы F относительно точки В .

А) Так как А = F · s , s =
= (0; 6; – 2)
,

то F · = 2·0 + 3·6 + (– 5)(– 2) = 28; А = 28;

б) Момент силы М =
,
= (0; – 6; 2) ,

=
= 24 i + 4 j + 12 k .

Следовательно, =
= 4
.

Задача 8.

Известны вершины О(0; 0), A (– 2; 0) параллелограмма ОАС D и точка пересечения его диагоналей В(2;–2) . Записать уравнения сторон параллелограмма.

Уравнение стороны ОА можно записать сразу: y = 0 . Далее, так как точка В является серединой диагонали AD (рис. 1), то по формулам деления отрезка пополам можно вычислить координаты вершины D (x ; y ) :

2 =
, –2 =
,

откуда x = 6 , y = –4 .

Теперь можно найти уравнения всех остальных сторон. Учитывая параллельность сторон OA и CD , составляем уравнение стороны CD : y = –4 . Уравнение стороны OD составляется по двум известным точкам:

=
,

откуда y = – x , 2 x + 3 y = 0 .

Наконец, находим уравнение стороны AC , учитывая тот факт, что она проходит через известную точку А (– 2; 0) параллельно известной прямой OD :

y – 0 = – (x + 2) или 2 x + 3 y + 4 = 0 . ◄


Задача 9.

Даны вершины треугольника ABC : A (4; 3), B (– 3; – 3), C (2; 7) . Найти:

а) уравнение стороны AB ;

б) уравнение высоты CH ;

в) уравнение медианы AM ;

г) точку N пересечения медианы AM и высоты CH ;

д) уравнение прямой, проходящей через вершину C параллельно стороне AB ;

е) расстояние от точки C до прямой AB .

А) Воспользовавшись уравнением прямой, проходящей через две точки , получим уравнение стороны AB :

=
,

откуда 6(x – 4) = 7(y – 3) или 6 x – 7 y – 3 = 0 ;

б) Согласно уравнению

y = kx + b (k = tg α ) ,

угловой коэффициент прямой AB k 1 =6/7 . С учетом условия перпендикулярности прямых AB и CH угловой коэффициент высоты CH k 2 = –7/6 (k 1∙ k 2 = –1). По точке C (2; 7) и угловому коэффициенту k 2 = –7/6 составляем уравнение высоты CH : (y y 0 = k (x x 0 ) )

y – 7 = – (x – 2) или 7 x + 6 y – 56 = 0 ;

в) По известным формулам находим координаты x , y середины M отрезка BC :

x = (– 3 + 2)/2 = –1/2, y = (– 3 + 7)/2 = 2.

Теперь по двум известным точкам A и M составляем уравнение медианы AM :

=
или 2 x – 9 y + 19 = 0 ;

г) Для нахождения координат точки N пересечения медианы AM и высоты CH составляем систему уравнений

Решая её, получаем N (26/5; 49/15) ;

д) Так как прямая, проходящая через вершину C , параллельна стороне AB , то их угловые коэффициенты равны k 1 =6/7 . Тогда, согласно уравнению:

y y 0 = k (x x 0 ) , по точке C и угловому коэффициенту k 1 составляем уравнения прямой CD :

y – 7 = (x – 2) или 6 x – 7 y + 37 = 0 ;

е) Расстояние от точки C до прямой AB вычисляют по известной формуле:

d = | CH | =

Решение данной задачи проиллюстрировано на рис. 2 ◄

Задача 10.

Даны четыре точки A 1 (4; 7; 8), A 2 (– 1;13; 0), A 3 (2; 4; 9), A 4 (1; 8; 9) . Составить уравнения:

а) плоскости A 1 A 2 A 3 ; б) прямой A 1 A 2 ;

в) прямой A 4 M , перпендикулярной к плоскости A 1 A 2 A 3 ;

г) прямой A 4 N , параллельной прямой A 1 A 2 .

Вычислить:

д) синус угла между прямой A 1 A 4 и плоскостью A 1 A 2 A 3 ;

е) косинус угла между координатной плоскостью О xy и плоскостью А 1 А 2 А 3 .

А) Используя формулу уравнения плоскости по трем точкам , составляем уравнение плоскости А 1 А 2 А 3 :

откуда 6х – 7у – 9z + 97 = 0 ;

б) Учитывая уравнения прямой, проходящей через две точки , уравнения прямой А 1 А 2 можно записать в виде

=
=
;

в) Из условия перпендикулярности прямой А 4 М и плоскости А 1 А 2 А 3 следует, что в качестве направляющего вектора прямой s можно взять нормальный вектор n = (6; – 7; – 9) плоскости А 1 А 2 А 3 . Тогда уравнение прямой А 4 М с учетом канонических уравнений прямой запишется в виде

=
=
;

г) Так как прямая A 4 N параллельна прямой А 1 А 2 , то их направляющие векторы s 1 и s 2 можно считать совпадающими: s 1 =s 2 = (5; – 6; 8) . Следовательно, уравнение прямой A 4 N имеет вид

=
=
;

д) По формуле нахождения величины угла между прямой и плоскостью

sin φ =

е) В соответствии с формулой нахождения величины угла между плоскостями

cos φ =
=

Задача 11.

Составить уравнение плоскости, проходящей через точки M (4; 3; 1) и

N (– 2; 0; – 1) параллельно прямой, проведенной через точки A (1; 1; – 1) и

B (– 3; 1; 0).

Согласно формуле уравнения прямой в пространстве , проходящей через две точки, уравнение прямой AB имеет вид

=
=
.

Если плоскость проходит через точку M (4; 3; 1) , то её уравнение можно записать в виде A (x – 4) + B (y – 3) + C (z – 1) = 0 . Так как эта плоскость проходит и через точку N (– 2; 0; – 1) , то выполняется условие

A(– 2 – 4) + B(0 – 3) + C(– 1 – 1) = 0 или 6A + 3B + 2C = 0 .

Поскольку искомая плоскость параллельна найденной прямой AB , то с учетом формул условия параллельности прямой и плоскости имеем:

4A + 0B + 1C = 0 или 4A – C = 0 .

Решая систему

находим, что C = 4 A , B = – A . Подставим полученные значения С и B в уравнение искомой плоскости, имеем

A(x – 4) – A(y – 3) + 4A(z – 1) = 0 .

Так как A ≠ 0 , то полученное уравнение эквивалентно уравнению

3(x – 4) – 14(y – 3) + 12(z – 1) = 0 . ◄

Задача 12.

Найти координаты x 2 , y 2 , z 2 точки M 2 , симметричной точке M 1 (6; – 4; – 2) относительно плоскости x + y + z – 3 = 0 .

Запишем параметрические уравнения прямой M 1 M 2 , перпендикулярной к данной плоскости: x = 6 + t , y = – 4 + t , z = – 2 + t . Решив их совместно с уравнением данной плоскости, найдем t = 1 и, следовательно, точку M пересечения прямой M 1 M 2 с данной плоскостью: M (7; – 3; – 1) . Так как точка M является серединой отрезка M 1 M 2 , то верны равенства.; в) параболы, имеющей директрису b

  • Элементы линейной алгебры вданный раздел включены основные типы задач, которые рассматриваются в теме «Линейная алгебра»: вычисление определителей, действия н

    Документ

    Квадратной матрицы найти а) минор элемента ; б) алгебраическое дополнение элемента ; в) ... найти а) минор элемента ; б) алгебраическое дополнение элемента ; в) ее определитель, получив предварительно нули в первой строке. Решение а) Минором элемента ...

  • І. элементы линейной алгебры и аналитической геометрии

    Документ

    ... элементу матрицы». Определение. Алгебраическим дополнением элемента аік матрицы А называется минор Мік этой матрицы, умноженный на (-1)и+к: Алгебраическое дополнение элемента ... метода. Пример 1. Задана матрица Найти det A. Решение. Преобразуем...

  • Решение: при сложении двух матриц к каждому элементу первой матрицы требуется прибавить элемент второй матр

    Решение

    Го столбца; называют минором элемента . Тогда по определению считается (1) – алгебраическое дополнение элемента , тогда (2) ... Линейные операции над матрицами Задача. Найти сумму матриц и и произведение... совместна, то требуется найти её общее решение. ...

  • Методические рекомендации по выполнению внеурочной самостоятельной работы студента Дисциплина «Математика» для специальности

    Методические рекомендации

    Такой определитель называется минором элемента aij. Обозначается минор – Mij. Пример: Найти минор элемента а12 определителя Для... на единицу ниже и минор равен: Алгебраическим дополнением элемента определителя называется его минор взятый со своим...