Геометрическое изображение функции двух переменных. Поверхности и линии уровня Смотреть что такое "линия разрыва" в других словарях

КОНСПЕКТ ЛЕКЦИЙ ПО МАТАНАЛИЗУ

Функции нескольких переменных. Геометрическое изображение функции двух переменных. Линии и поверхности уровня. Предел и непрерывность функции нескольких переменных, их свойства. Частные производные, их свойства и геометрический смысл.

Определение 1.1. Переменная z (с областью изменения Z ) называется функцией двух независимых переменных х,у в множестве М , если каждой паре (х,у ) из множества М z из Z .

Определение 1.2. Множество М , в котором заданы переменные х,у, называется областью определения функции , а сами х,у – ее аргументами .

Обозначения: z = f (x , y ), z = z (x , y ).

Примеры.

Замечание. Так как пару чисел (х,у ) можно считать координатами некоторой точки на плоскости, будем впоследствии использовать термин «точка» для пары аргументов функции двух переменных, а также для упорядоченного набора чисел
, являющихся аргументами функции нескольких переменных.

Определение 1.3. . Переменная z (с областью изменения Z ) называется функцией нескольких независимых переменных
в множествеМ , если каждому набору чисел
из множестваМ по некоторому правилу или закону ставится в соответствие одно определенное значение z из Z . Понятия аргументов и области определения вводятся так же, как для функции двух переменных.

Обозначения: z = f
,z = z
.

Геометрическое изображение функции двух переменных.

Рассмотрим функцию

z = f (x , y ) , (1.1)

определенную в некоторой области М на плоскости Оху . Тогда множество точек трехмерного пространства с координатами (x , y , z ) , где , является графиком функции двух переменных. Поскольку уравнение (1.1) определяет некоторую поверхность в трехмерном пространстве, она и будет геометрическим изображением рассматриваемой функции.

z = f(x,y)

M y

Замечание . Для функции трех и более переменных будем пользоваться термином «поверхность в n -мерном пространстве», хотя изобразить подобную поверхность невозможно.

Линии и поверхности уровня.

Для функции двух переменных, заданной уравнением (1.1), можно рассмотреть множество точек (х,у) плоскости Оху , для которых z принимает одно и то же постоянное значение, то есть z = const. Эти точки образуют на плоскости линию, называемую линией уровня .

Пример.

Найдем линии уровня для поверхности z = 4 – x ² - y ². Их уравнения имеют вид x ² + y ² = 4 – c (c =const) – уравнения концентрических окружностей с центром в начале координат и с радиусами
. Например, прис =0 получаем окружность x ² + y ² = 4 .

Для функции трех переменных u = u (x , y , z ) уравнение u (x , y , z ) = c определяет поверхность в трехмерном пространстве, которую называют поверхностью уровня .

Пример.

Для функции u = 3x + 5y – 7z –12 поверхностями уровня будет семейство параллельных плоскостей, задаваемых уравнениями

3x + 5y – 7z –12 + с = 0.

Предел и непрерывность функции нескольких переменных.

Введем понятие δ-окрестности точки М 0 (х 0 , у 0 ) на плоскости Оху как круга радиуса δ с центром в данной точке. Аналогично можно определить δ-окрестность в трехмерном пространстве как шар радиуса δ с центром в точке М 0 (х 0 , у 0 , z 0 ) . Для n -мерного пространства будем называть δ-окрестностью точки М 0 множество точек М с координатами
, удовлетворяющими условию

где
- координаты точкиМ 0 . Иногда это множество называют «шаром» в n -мерном пространстве.

Определение 1.4. Число А называется пределом функции нескольких переменных f
в точкеМ 0 , если

такое, что | f (M ) – A | < ε для любой точки М из δ-окрестности М 0 .

Обозначения:
.

Необходимо учитывать, что при этом точка М может приближаться к М 0 , условно говоря, по любой траектории внутри δ-окрестности точки М 0 . Поэтому следует отличать предел функции нескольких переменных в общем смысле от так называемых повторных пределов , получаемых последовательными предельными переходами по каждому аргументу в отдельности.

Примеры.

Замечание . Можно доказать, что из существования предела в данной точке в обычном смысле и существования в этой точке пределов по отдельным аргументам следует существование и равенство повторных пределов. Обратное утверждение неверно.

Определение 1.5. Функция f
называетсянепрерывной в точке М 0
, если
(1.2)

Если ввести обозначения

То условие (1.2) можно переписать в форме

(1.3)

Определение 1.6. Внутренняя точка М 0 области определения функции z = f (M ) называется точкой разрыва функции, если в этой точке не выполняются условия (1.2), (1.3).

Замечание. Множество точек разрыва может образовывать на плоскости или в пространстве линии или поверхности разрыва .

В начертательной геометрии поверхность рассматривают как множество последовательных положений движущейся линии или другой поверхности в пространстве. Линию, перемещающуюся в пространстве и образующую поверхность, называют образующей. Образующие могут быть прямыми и кривыми. Кривые образующие могут быть постоянными и переменными, например закономерно изменяющимися.

Одна и та же поверхность в ряде случаев может рассматриваться как образованная движениями различных образующих. Например, круговой цилиндр может быть образован: во-первых, вращением прямой относительно неподвижной оси, параллельной образующей; во-вторых, движением окружности, центр которой перемещается по прямой, перпендикулярной плоскости окружности; в-третьих, прямолинейным движением сферы.

При изображении поверхности на чертеже показывают лишь некоторые из множества возможных положений образующей. На рис. 8.1 показана поверхность образующей АВ. При своем движении образующая остается параллельной направлению MN и одновременно пересекает некоторую кривую линию CDE. Таким образом, движение образующей AB направляется в пространстве линией CDE.

Линию или линии, пересечение с которыми является обязательным условием движения образующей при образовании поверхности, называют направляющей или направляющими.

На рис. 8.2 показана поверхность, образованная движением прямой AB по двум направляющим – прямой O1 <⅞ (ABE O iO 2) и пространственной кривой FGL, не пересекающей прямую O10 2.

Иногда в качестве направляющей используют линию, по которой движется некоторая характерная для образующей точка, но не лежащая на ней, например центр окружности.

Из различных форм образующих, направляющих, а также закономерностей образования конкретной поверхности выбирают те, которые являются наиболее простыми и удобными для изображения на чертеже поверхности и решения задач, связанных с нею.

Иногда для задания поверхности используют понятие "определитель поверхности", под которым подразумевают совокупность независимых условий, однозначно задающих поверхность. В числе условий, входящих в состав определителя, различают геометрическую часть (точки, линии, поверхности) и закон (алгоритм) образования поверхности геометрической частью определителя.

Рассмотрим краткую классификацию кривых поверхностей, принятую в начертательной геометрии.

Линейчатые развертываемые поверхности. Поверхность, которая может быть образована прямой линией, называют линейчатой поверхностью. Если линейчатая поверхность может быть развернута так, что всеми своими точками она совместится с плоскостью без каких-либо повреждений поверхности (разрывов или складок), то ее называют развертываемой. К развертываемым поверхностям относятся только такие линейчатые поверхности, у которых смежные прямолинейные образующие параллельны или пересекаются между собой, или являются касательными к некоторой пространственной кривой. Все остальные линейчатые и все нелинейчатые поверхности относятся к неразвертываемым поверхностям.

Развертываемые поверхности – цилиндрические, конические, с ребром возврата или торсовые. У цилиндрической поверхности образующие всегда параллельны, направляющая – одна кривая линия. Изображение на чертеже ранее показанной в пространстве цилиндрической поверхности (см. рис. 8.1) представлено на рис. 8.3. Частные случаи – прямой круговой цилиндр, наклонный круговой цилиндр (см. рис. 9.17, направляющая-окружность, плоскость которой расположена под углом к оси цилиндра и с центром на его оси). У конических поверхностей все прямолинейные образующие имеют общую неподвижную точку – вершину, направляющая – одна любая кривая линия. Пример изображения конической

поверхности на чертеже – рис. 8.4, проекции вершины G", G", направляющей C"D"E", C"D"E". Частные случаи – прямой круговой конус, наклонный круговой конус – см. рис. 10.10, справа. У поверхностей с ребром возврата или торсовых прямолинейные образующие касательны к одной криволинейной направляющей.

Линейчатые неразвертываемые поверхности: цилиндроид, коноид, гиперболический параболоид (косая плоскость). Поверхность, называемая цилиндроидом, образуется при перемещении прямой линии, во всех своих положениях сохраняющей параллельность некоторой заданной плоскости ("плоскости параллелизма") и пересекающей две кривые линии (две направляющие). Поверхность, называемая коноидом, образуется при перемещении прямой линии, во всех своих положениях сохраняющей параллельность некоторой плоскости ("плоскости параллелизма") и пересекающей две направляющие, одна из которых кривая, а другая – прямая линия (рис. 8.5, см. также рис. 8.2). Плоскостью параллелизма на рис. 8.5 является плоскость π1;

направляющие – кривая с проекциями E"G"F", E"G"F", прямая с проекциями О",0", О" ,0. В частном случае, если криволинейная направляющая – цилиндрическая винтовая линия с осью, совпадающей с прямолинейной направляющей, образуемая поверхность – винтовой коноид, рассматриваемый ниже. Чертеж гиперболического параболоида, называемого косой плоскостью, приведен на рис. 8.6. Образование этой поверхности можно рассматривать как результат перемещения прямолинейной образующей по двум направляющим – скрещивающимся прямым параллельно некоторой плоскости параллелизма. На рис. 8.6 плоскость параллелизма – плоскость проекции яь направляющие – прямые с проекциями M"N", M"N" и F"G", F"G".

Нелинейчатые поверхности. Их подразделяют на поверхности с постоянной образующей и с переменной образующей.

Поверхности с постоянной образующей в свою очередь подразделяют на поверхности вращения с криволинейной образующей, например сфера, тор, эллипсоид вращения и др., и на циклические поверхности, например поверхности изогнутых труб постоянного сечения, пружин.

Поверхности с переменной образующей подразделяют на поверхности второго порядка, циклические с переменной образующей, каркасные. Чертеж поверхности второго порядка – эллипсоида приведен на рис. 8.7. Образующая эллипсоида – деформирующийся эллипс. Две направляющие – два пересекающихся эллипса, плоскости которых ортогональны и одна ось – общая. Образующая пересекает направляющие в крайних точках своих осей.

Плоскость образующего эллипса при перемещении остается параллельной плоскости, образованной двумя пересекающимися осями направляющих эллипсов.

Циклические поверхности с переменной образующей имеют образующую – окружность переменного радиуса, направляющую – кривую, по которой перемещается центр образующей, плоскость образующей перпендикулярна направляющей. Каркасную поверхность задают не движущейся образующей, а некоторым количеством линий на поверхности.

Обычно такие линии – плоские кривые,

плоскости которых параллельны между собой. Две группы таких линий пересекают друг друга и образуют линейчатый каркас поверхности. Точки пересечения линий образуют точечный каркас поверхности. Точечный каркас поверхности может быть задан и координатами точек поверхности. Каркасные поверхности широко используют при конструировании корпусов судов, самолетов, автомобилей, баллонов электронно-лучевых трубок.

Из указанных поверхностей рассмотрим более подробно винтовую.

Поверхности слабых и сильных разрывов (, ч. II, гл. I, § 4). Разрывы сплошности (, §§ 18, 19).

Условия на поверхностях сильного разрыва в материальных средах и в электромагнитном поле (, гл. VII, §§ 4, 5; , § 35). Тангенциальные разрывы и ударные волны (, § 18, 19).

Гидростатика

Равновесие жидкости и газа в поле потенциальных массовых сил. Закон Архимеда. Равновесие и устойчивость плавающих тел и атмосферы (, VIII § 1; , ч. I, гл. III, §§ 1-4, 8).

Движение идеальной несжимаемой жидкости

Общая теория непрерывных потенциальных движений несжимаемой жидкости (, гл. VIII, § 12). Свойства гармонических функций (, гл. VIII, § 12). Многозначностъ потенциала в многосвязных областях (, ч. I, гл. I, § 18). Кинематическая задача о произвольном движении твердого тела в неограниченном объеме идеальной несжимаемой жидкости (, гл. VIII, § 14). Энергия, количество движения и момент количества движения жидкости при движении в ней твердого тела (, гл. VIII, § 15). Движение сферы в идеальной жидкости (, гл. VIII, § 13).

Силы воздействия идеальной жидкости на тело, движущееся в безграничной массе жидкости (, гл. VIII, § 16). Основы теории присоединенных масс (, гл. VIII, § 15). Парадокс Даламбера (, гл. VIII, §§ 8, 16).

Плоские движения идеальной жидкости. Функция тока. Применение методов теории аналитических функций комплексного переменного для решения плоских задач гидродинамики и аэродинамики (, ч. I, гл. III, §§ 11-16; , §§ 39, 40). Стационарное обтекание жидкостью цилиндра и профиля (, § 41). Формулы Чаплыгина и теорема Жуковского (, ч. I, гл. VI, §§ 5, 6; , § 44). Правило Жуковского и Чаплыгина определения циркуляции вокруг крыльев с острой задней кромкой (, ч. I, гл. VI, § 7; , § 41). Нестационарное обтекание профилей (, гл. I, §§ 1-5).

Плоские задачи о струйных течениях жидкости. Обтекание тел с отрывом струй. Схемы Кирхгофа, Эфроса и др. (, ч. I, гл. VI, § 16; , § 47; , гл. V, § 4).

Определение поля скоростей по заданным вихрям и источникам (, ч. I, гл. V, § 11; , гл. VIII, § 26). Формулы Био-Савара. Прямолинейный и кольцевой вихри (, ч. I, гл. V, §§ 12-15; , гл. VIII, § 27). Законы распределения давлений, силы, обуславливающие вынужденное движение прямолинейных вихрей в плоском потоке (, гл. VIII, § 28).

Постановка задачи и основные результаты теории крыла конечного размаха. Несущая линия и несущая поверхность (, гл. VII, § 27; , § 68).

Постановка задачи Коши-Пуассона о волнах на поверхности тяжелой несжимаемой жидкости (, ч. I, гл. VIII, §§ 2, 3; , § 24). Гармонические волны. Фазовая и групповая скорость. Дисперсия волн (, ч. I, гл. VII, § 8; , § 24; , §§ 11.1, 11.2, 11.4). Перенос энергии прогрессивными волнами (, ч. I, гл. VII, §§ 18-19; , § 11.6). Теория мелкой воды (, § 108; , § 13.10). Уравнения Буссинеска и Кортевега-де-Вриза. Нелинейные волны. Солитон (, §§ 13.11, 13.12; , § 24).

Движение вязкой жидкости. Теория пограничного слоя.

Турбулентность

Ламинарное движение несжимаемой вязкой жидкости. Течения Куэтта и Пуазейля (, ч. II, гл. II, §§ 11, 12; , гл. VIII, § 21). Течение вязкой жидкости в диффузоре (, гл. V, §§ 6, 9; гл. X, §§ 3, 4; , § 23). Диффузия вихря (, гл. VIII, § 30).

Приближения Стокса и Озеена. Задача о движении сферы в вязкой жидкости в постановке Стокса (, ч. II, гл. II, §§ 23, 25; , гл. VIII, § 20; , § 20).

Ламинарный пограничный слой (, гл. VIII, § 23; , гл. VII, § 1). Задача Блазиуса (, гл. VIII, § 24; , гл. VII, § 5). Интегральные соотношения и основанные на их использовании приближенные методы в теории ламинарного пограничного слоя (, § 89). Явление отрыва пограничного слоя (, § 86; , §§ 39, 40; , гл. VII, § 2). Устойчивость пограничного слоя (, § 41; , гл. XVI, §§ 2, 3). Теплообмен с потоком на основе теории пограничного слоя (, гл. VI, § 2; §§ 114-116; , гл. XII, §§ 1, 4).

Турбулентность (, § 95). Опыт Рейнольдса. Уравнения Рейнольдса (, гл. VIII, § 22). Турбулентный перенос тепла и вещества (, §§ 97, 98). Полуэмпирические теории турбулентности (, § 98; , гл. XIX, §§ 2-4; (, гл. III, § 4).). Профиль скорости в пограничном слое. Логарифмический закон (, § 120; , гл. XIX, § 5). Прямое численное решение уравнений гидромеханики при наличии турбулентности ().

Линии разрыва (fault). Данная операция позволяет отрисовать структурную линию, которая в каждой точке имеет две отметки. Такая структурная линия называется линией разрыва. Пример линии разрыва – подпорная стенка и бордюр (борт, для питерцев – поребрик:)). Подписать двойные отметки на бордюре можно специальной командой .

При вызове функции выводится диалоговое окно, где необходимо указать требуемые параметры.

При выборе "Брать фиксированное значение отметки" введите численное значение отметки.

При выборе "Брать по Поверхности" выберите из списка имя существующей поверхности.

Тип линии разрыва – левая или правая.

Совет. При установке флажка «Сохранять значение разности отметок» – отметка верха определяется таким образом: к отметке низа добавляется значение разности, и отметка верха становится нередактируемой. Если же необходимо ее отредактировать, то отключите флажок разностей и включите флажок этой отметки – она станет доступна для редактирования.

Значения отметок и разности можно контролировать и редактировать в диалоговом окне:

Это окно появляется после того, как на запрос программы "Введите первую точку или [оПции(P)]:" указана точка.

Запоминается, в каком из значений был ввод. При следующем вызове окна ввод начинается с запомненного поля.

Имеется возможность отключать отметку, которая неизвестна, – первый столбец флажков.

После ввода всей структурной линии неизвестные отметки рассчитываются исходя из значений известных отметок, если это возможно.

Последний столбец флажков – это базовая отметка для пересчета (имеет смысл привключенных слева флажках).

Если базовая отметка не изменяется, а изменяется одна из небазовых, то пересчитывается другая небазовая. А если базовая нижняя или верхняя и менять ее – меняется средняя; если базовая средняя и менять ее – по умолчанию меняется верхняя.

При выключении одного из флажков в первом столбце смысл базовой отметки теряется.

Имееется ряд радиокнопок, которые предлагают отметку для начального ввода. Если выбрана "Последняя", то предлагается последняя введенная отметка.

Линия разрыва – это специальный объект, геон. Смещение в плане между верхом и низом устанавливается в диалоговом окне "Установки поверхностей" в закладке "Установки структурных линий" в секции "Дополнительные параметры линий разрыва" с помощью параметра "Величина смещения линии разрыва при построении".

В конце отрисовки структурной линии сдвига появляется запрос-подтверждение такого вида:

"Укажите точкой сторону сдвига структурной линии <Линия разрыва (Правая)> или :".

Пользователь либо указывает сторону сдвига структурной линии точкой (для удобства ввода точки появляется резиновая линия от последней введенной точки структурной линии до указываемой точки), либо подтверждает тип сдвига, заданный первоначально (любой другой ввод).

При привязке (например, _Nea) привязка производится к низу структурной линии.

В структурную линию разрыва добавлены следующие возможности:

§ возможность привязки к верхней линии,

§ отображение стороны сдвига,

§ возможность задавать величину сдвига при построении поверхности (достаточно 0.01),

§ при команде _Explode она преобразовывается в две геолинии.

В предыдущих главах мы рассматривали только такие течения, при которых распределение всех величин (скорости, давления, плотности и т. д.) в газе непрерывно. Возможны, однако, и движения, при которых возникают разрывы непрерывности в распределении этих величин.

Разрыв непрерывности в движении газа имеет место вдоль некоторых поверхностей; при прохождении через такую поверхность указанные величины испытывают скачок. Эти поверхности называют поверхностями разрыва. При нестационарном движении газа поверхности разрыва не остаются, вообще говоря, неподвижными; необходимо при этом подчеркнуть, что скорость движения поверхности разрыва не имеет ничего общего со скоростью движения самого газа. Частицы газа при своем движении могут проходить через эту поверхность, пересекая ее.

На поверхностях разрыва должны выполняться определенные граничные условия.

Для формулирования этих условий рассмотрим какой-нибудь элемент поверхности разрыва и воспользуемся связанной с этим элементом системой координат с осью направленной по нормали к нему.

Во-первых, на поверхности разрыва должен быть непрерывен поток вещества: количество газа, входящего с одной стороны, должно быть равно количеству газа, выходящему с другой стороны поверхности. Поток газа через рассматриваемый элемент поверхности (отнесенный на единицу площади) равен Поэтому должно выполняться условие где индексы 1 и 2 относятся к двум сторонам поверхности разрыва.

Разность значений какой-либо величины с обеих сторон поверхности разрыва мы будем ниже обозначать посредством квадратных скобок; так,

и полученное условие напишется в виде

Наконец, должен быть непрерывен поток импульса, т. е. должны быть равны силы, с которыми действуют друг на друга газы по обеим сторонам поверхности разрыва. Поток импульса через единицу площади равен (см. § 7)

Вектор нормали направлен по оси Поэтому непрерывность А - компоненты потока импульса приводит к условию

а непрерывность у- и -компонент дает

Уравнения (84,1-4) представляют собой полную систему граничных условий на поверхности разрыва. Из них можно сразу сделать вывод о возможности существования двух типов поверхностей разрыва.

В первом случае через поверхность разрыва нет потока вещества. Это значит, что Поскольку отличны от нуля, то это значит, что должно быть

Условия (84,2) и (84,4) в этом случае удовлетворяются автоматически, а условие (84,3) дает Таким образом, на поверхности разрыва в этом случае непрерывны нормальная компонента скорости и давление газа:

Тангенциальные же скорости и плотность (а также другие термодинамические величины, кроме давления) могут испытывать произвольный скачок. Такие разрывы будем называть тангенциальными.

Во втором случае поток вещества, а с ним и отличны от нуля. Тогда из (84,1) и (84,4) имеем:

т, е. тангенциальная скорость непрерывна на поверхности разрыва. Плотность же, давление (а потому и другие термодинамические величины) и нормальная скорость испытывают скачок, причем скачки этих величин связаны соотношениями (84,1-3). В условии (84,2) мы можем в силу (84,1) сократить а вместо можно в силу непрерывности v и писать v. Таким образом, на поверхности разрыва в рассматриваемом случае должны иметь место условия:

Разрывы этого типа называют ударными волнами.

Если теперь вернуться к неподвижной системе координат, то вместо надо везде писать разность между нормальной к поверхности разрыва компонентой скорости газа и скоростью и самой поверхности, направленной, по определению, по нормали к ней:

Скорости и и берутся относительно неподвижной системы отсчета. Скорость есть скорость движения газа относительно поверхности разрыва; иначе можно сказать, что есть скорость распространения самой поверхности разрыва относительно газа. Обращаем внимание на то, что эта скорость различна по отношению к газу с обеих сторон поверхности (если испытывает разрыв).

Тангенциальные разрывы, на которых испытывают скачок касательные компоненты скорости, рассматривались нами уже в § 29. Там было показано, что в несжимаемой жидкости такие разрывы неустойчивы и должны размываться в турбулентную область. Аналогичное исследование для сжимаемой жидкости показывает, что такая неустойчивость имеет место и в общем случае произвольных скоростей (см. задачу 1).

Частным случаем тангенциальных разрывов являются разрывы, в которых скорость непрерывна и испытывает скачок только плотность (а с ней и другие термодинамические величины за исключением давления); такие разрывы называют контактными. Сказанное выше о неустойчивости, к ним не относится.